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ABSTRACT

In this work, a low-noise plasma simulation model is developed, and
applied to a series of linear and nonlinear problems associated with
electrostatic wave Propagation in a one-dimensional, collisionless,
Maxwellian plasma, in the absence of magnetic field. It is demonstrated
that use of the hybrid simulation model allows economical studies to be
carried out in both the linmear and nonlinear régimes with better quanti-
tative results, for comparable computing time, than can be obtained by
conventional particle simulation models, or direct solution of the
Vlasov equation,

The characteristics of the hybrid simulation model itself are first
investigated, and it is shown to be capable of verifying the theoretical
linear dispersion relation at wave energy levels as low as 10-6 of the
Plasma thermal energy. Having established the validity of the hybrid
simulation model, it is then used to study the nonlinear dynamics of a
monochromatic wave, sideband instability due to trapped particles, and
satellite growth. The simulations arse performed in parameter ranges
such that detailed quantitative comparison with available theories is
bossible. In particular, the transition from time-asymptotie amplitude
oscillation to continuous Landau damping is ianvestigated for a mono-

chromatic wave as the initial wave amplitude is varied, The results,
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which include a small nonlinear frequency shift, compare favorably with
theory. The study of sideband instability confirms the applicability
of quasilinear theory at short times, and parametric coupling theory in
the time-asymptotic limit, and reproduces features analogous to those
observed in laboratory experiments., The growth of a satellite wave in
the presence of a large amplitude wave and a test wave is shown to be
explicable by a simple theory involving slow modulation of the large
amplitude wave,

It is concluded that the hybrid simulation model constitutes a
reliable and economical tool for use in the study of plasma phenomena,
It should be widely applicable to the testing of predictions of linear
and nonlinear theories, and the descriptipn of more complicated situations

whiech are not amenable to analysis.
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1. INTRODUCTION

This dissertation is concerned with computer simulatjon of electron
plasma waves in a Maxwellian plasma, in the absence of magnetic field,
The aims of our simulations are, first, to develop an economical Iow-
noise simulation technique, and second, to apply it to the study of
linear and nonlinear wave phenomena in a one-dimensional plasma with
periodic boundary conditions. In what follows, emphasis has been placed
on simulations for wave and plasma parameters comparable with those
assumed in available theories, and accessible in laboratory experiments,

There are two distinctly different approaches to the simulation of
plasma dynamics: first is the use of a particle simulation model in
which individual charged particles are followed, and second is direct
numerical solution of the Vlasov equation describing the charged particle
velocity distribution function. The particle simulation model has the
disadvantage that the fluctuation level is usually several orders of
magnitude higher than in an actual plasma. This stems from the fact
that it is not feasible to tollow on the computer the dynamics of as
many particles as there are in a plasma. This fluctuation not only gives
rise to nonphysical effects, but also makes it difficult to study linear
and weakly nonlinear phenomena. This is particularly unfortunate since
most of the nonlinear theories to date are based on an expansion method
which is valid only in weakly nonlinear cases. Consequently, they
cannot be clearly validated by computer simulation, nor XiEE versa,
Direct solution of the Vlasov equation is sgbject to numerical instabi-
lity associated with the free-streaming term in the Vlasov 'equation,

This tends to limit application of the method to short-time simulations.



It will be shown in this work that a hybrid approach, combining
features of the particle simulation model and Vliasov approach, can
avoid the foregoing difficulties, and provide reliable results in both
the linear and nonlinear régimes,

In Section 2, we review various types of particle simulation models,
and cpnsider numerical solution of the Vlasov equation. The hybrid
simulation model is described and analyzed in Section 3, and results of
test runs in the linear régime are presented to demonstrate the feasi-
bility of high quality simulation. In Section 4, the nonlinear dynamics
of a moncchromatic plasma wave are studied as our first application of
the model. Section 5 presents a comprehensive study of sideband insta-
bility in which a large amplitude wave and its sidebands interact
through the trapped particles to cause growth of the sideband waves.

In Section 6, satellite growth due to nonlinear interaction between the
lower and upper sidebands is studied. Some conclusions on the validity
and applicability of the hybrid simulation apprqach are given in

Section 7.



2. COMPUTER APPLICATIONS TO PLASMA PHYSICS

2.1 The Vlasov Equation and Simulation Approaches

There are two ways of approaching problems in plasma physics hy
use of computers, QOne is to use the Vlasov equation, describing the
velocity distribution funection of smeared-out charges, combined with
the Maxwell equations. The other is to use a particle simulation
approach dealing with discrete charges, combined with the Newton equation
and the Maxwell equations.

The Vlasov equation,

at of, @ at,
st Lot ErIxB om0, 2.1

coupled with the Maxwell equations,

vx§=g_+§%, vV-B=20,
(2.2)
3B
~ P
E = - -= CE o=
vXxk at '’ v - eo

and equations for current and charge densities,

” = f .
J zljﬁgﬂqi, . 2:/%_93 , (2.3)
i i

is capable of describing the collective behavior of collisionless
plasmas, Here, fi is the distribution function of the i-th charged
particle species, E and B are the electric and magnetic fields,
including both time~varying and static fields, q and m, are the

particle charge and mass, and ¢ is the permittivity of free space.

0

It is important to note that the Vlasov equation does not include



discrete particle encounters and thermal fluctuations, whereas discrete
charge models automatically include such effects.
In the Vlasov approach, the major task is to solve Eqs. (2.1)-(2.3)
numerically, subjecl to appropriate initial and boundary conditions.
. . 1 2 3
This line has been pursued by Knorr, Kellegg, and Armstrong, These

authors solved the Vlasov equation,

af. at, q. of .
1 1 1 1
g "Vt Fw 70 2.4

and the Poisson equation,
dE 1 :E:
== (_E-(; fqif.idv s (2.5)
i

in the study of Landau damping,l’3 and the two-stream instability at
large amplitudes,zin a one-dimensional plasma, However, all of these
workers encountered the serious computational difficulty which stems
from the nature of the Vlasov equation, i.e,, the tendency to develop

steep gradients in phase-space as time increases, To appreciate this,

consider the following simplified equation,

af af
-a—t-+ V—a-}—c=0, (2.8)

which describes free-streaming particles, By taking a single Fourier

component of f it is seen from Eq. (2.6) that the distribution

1
function always has a part of the form, exp (ikvt). This represents
velocity-space oscillation which becomes finer and finer as time

increases, It is due to conversion of the space oscillations of the

initial distribution function into velocity oscillations by the ghear

motion in phase-space,



Since the gradient of the velocity distribution function increases
with time, a progressively finer grid in phase-space will he required
for accurate computation. This is the case for the difference method
used by Kellogg.z In the case of the expansion method used by Knorr1
and Armstrong,3 the development of large derivatives of ¢ requires a
large number of expansion terms to be used, The number of grid points,
or the number of expansion terms allowable, is limited by computer
capacity and economic considerations. The finite grid size, or trun-
cated expansion, consequently sets limits on the elapsed time during
which the simulation is aeccurate,

Direct solution of the Vlasov equation gives accurate quantitative
results in both the linear and nonlinear régimes only until it approaches
the limit mentioned above, The particle simulation model, on the other
hand, is free from such time limitations, and is therefore better
suited for nonlinear problens,

Computer simulation seems to have been introduced into the field
of plasma physics by Buneman, who used the charge sheet model to solve a
nonl inear problem.4 In particular, he followed the development of
electron-ion two-stream instability to show that rapid randomization of
the initially coherent streaming energy takes place in a cold colligion—
less plasma. Soon afterwards, Dawson investigated the thermalization
and ergodic behavior of a system of charge sheets and found that
statistical mechanics can be applied to the system.5 He then studied
the properties of the one-dimensional plasma in thermal equilibrium,
finding good agreement with theoretical results based on statistical

mechanies, Since then, the simulation model has been improved and



applied to a wide variety of plasma problems which are not analytically
tractable, Computer codes have been written for both electrostatic

and electromagnetic cases, with or without external magnetic field,

and in one, two, or three dimensions, Relativistic effects have also
been included,

In the charge sheet model, electrons or ions are considered to
form infinitesimally thin charge sheets, extending to infinity in two
dimensions, and moving only in the direction perpendicular to the plane
of the sheet. They are assumed to pass freely through each other, Such
& charge sheet generates electric field, E , which is discontinuous at
the sheet position, and takes constant values on each side, as shown in
Fig, 2.1. For a given boundary value, the electric field created by
many charge sheets can be calculated at any point by a simple algorithm,
For example, suppose the electric field to be given at x = 0 ., The

algorithm used to find the electric field at x is

o
E(x) = E(Q) + -E—(-) (Ni - Ne} , 2.7}

where Ni and Ne are the number of ion and electron sheets in the
interval (0,x), and ¢ is the (positive) surface charge density of

the sheet (see Fig. 2.2). Note that the electric field is discontinuous
at the sheet position, and is not defined by Eq. (2.7). The electric
tield at the sheet position is taken at the middle of the jump shown by
a creoss in Fig, 2,2, Using the electric field thus computed, the Newton
equaticon of motion for a sheet is integrated to find its position and
velocity after a small time-step, From the new distribution of the

charge sheets, the electric field can again be calculated, and
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FI1G. 2.1. Electric field generated by an isolated

charge sheet, g is the surface charge density,
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FIG. 2.2, Electric field calculated by Eq. (2.1).

E(O) = 0 is assumed. .



substituted in the Newton equation, Starting with a given initial
distribution of charge sheets, the behavior of the system can thus be
followed in time, When a particle leaves one end of the system, it is
reintroduced at the other end, with the same velocity that the particle
had upon leaving the system, This imposes a periodic boundary condition,
Another condition sometimes used is that of a reflecting boundary; a
particle rebounds elastically at the ends of the system. This boundary
condition can be used for study of standing waves,

In simulations of phenomena occurring on time scales for which
only electron motions need be considered, the positive ions behave as
an immobile neutralizing background., There are two ways of treating the
ions in this case. One is to place ion sheets equidistantly in space.
The other is 1o spread the positive charge uniformly.5 In the latter
case, the electric field resulting from equally spaced electron

sheets is as shown in Fig. 2.3.

Wm
Y

jA/l/l/l/l/l N/
3/1/ /y VYV VY

FIG, 2.3. Electric field resulting from equally spaced
electron sheets and uniformly distributed positive

ion charge,



Simple as it is in principle, the sheet model described above is
capable of simulating a wide variety of electrostatic, one-dimensional
problems, However, since the number of particles that can be handled
on modern computers is still many orders of magnitude smaller than the
numbers of_charged particles in experimental plasmas, the fluctuations
appearing in the averaged quantities, such as the electric field and
mean particle velocity, are much larger in a simulation model than in
Lhe plasma simulated, The fluctuation amplitudes can be reduced by
inereasing the number of simulation barticles, N ; but they decrease
only as N_1/2 . Consequently, the energy of the fluctuations in a
simulation plasma is typically many orders of magnitude higher than
that in the plasma simulated. Since the enhanced fluctuations may
cause nonphysical or exaggerated effects, considerable effort has been
made to reduce the fluctuations without increasing the number of
particles, This topic will be discussed in Section 2,3 in connection
with various more sophisticated models developed from the simple charge
sheet model just described.

In two~dimensional problems, infinitely long charged rods are
postulated, instead of charge sheéts, t0 allow simulation in two
dimensions, In three dimensions, the particles are represented by
point charges, The electric fields created by isolated rod and point
particles are shown in Fig. 2.4.

In electromagnetic problems, for which the time-varying magnetic
field is important, a model must be employed which properly solves the

equation of charge particle motion, including a Lorentz force term,



dv dx
i Y X

_—"_=m_1(£+11x§)5 'a?—:'y-l ) (2-8)

and the Maxwell equations [Eg. (2.2)], where subscript i denotes the
particle species, The current and charge densities are obtained from

knowledge of the positions and velocities of the particles,

E E
‘ %

a 9
r r2
P = o
ROD POINT

FIG, 2.4. Electric field, E , vs, radial distance, r.
{a} Rod charge, q! is charge per unit length,
(b) Point charge,. qu is charge.

In what follows, we shall restrict ourselves to electrostatic

phenomena, and concentrate on a one-dimensional model without external

magnetic field. Therefore, we need only consider the one-dimensioconal

equation of motion,

i i
dt m ’ e A (2.9)

P . . (2.10)



Having considered the two approaches, it i= an attractive possi-
bility to develop a method which bossesses the desirable features of
both of them, Specifically, it should provide a very low fluctuation
level, and retain particle discreteness effects, so that it will be
possible to study both small amplitude waves and large amplitude non-~
linear phenomena. Such a 'hybrid' approach has been proposed by
Denavit.6 The main purpose of our work has been to develop this method,
and to apply it to the study of nonlinear phienomena associated with
large amplitude electron plasma waves. Section 3 is devoted to analyti-
cal and numerical study of its characteristics.

Various methods of solving the Vlasov equation are described in
Section 2.2, Detailed descriptions of a variety of partiecle simulation

models are given in Section 2.3.

2.2 BSolution of the Vlasov Equation

2.2,1 Finite Difference Methods

Since the Vlasov equation is a partial differential equation,

probably the most sStraightforward approach is to approximate it by a
finite difference equation, and to solve it numerically on a computer,
This is simple, because it is a direct integration scheme, but lengthy,
because a large number of grid points are necessary.

The Vlasov equation is nonlinear since the electric field, E , is
a function of the distribution function, £ , It is a hyperbolic equation
with variable coefficients, From the theory of numerical analysis, it
is known that a finite difference method for a linear, hyperbolic,
partial differential equation with constant coefficients is stable for
appropriate choice of grid size, At and Ax , and convergent to the

11



exact solution in the limit At = O, Ax - O ., However, there is no
guarantee of stability or convergence in the nonlinear, variable
coefficient case.
Consider the difference equation corresponding to Eq. (2.6) on a
grid with xp = PAX, tn = nAt, where p and n are integers, and
n

fp = f(xp,tn). A simple difference approximation to Eq. (2.6) is

obtained by the substitutions

n+1 n n n n
. f - (£ + £ 2 f - £
ot et )/ ot fpa " T,
3t AT , ax BAX : ¥
This yields
n Il Il 9}
kil f b - T
o+l ped el _at, [Cpel Tpmd (2.12)
P - 2 Ax 2 ' )

which is known to be stable for 1vAt/Ax| < l.7 The error in this
scheme is of second order in At and Ax . It should be noted that
the stability criterion is derived assuming that the coefficient, i.e.
v is constant, so this must be considered as a local conditien in
velocity-space.

A popular method of calculation, because it gives higher order

accuracy, is the "leap-frog' scheme given by

n+l n-1 At n n

f = £ - = v {f - i (2.13)
p p Ax ( P+l p~1) ’

which has the same stability condition |vat/Ax] < 1 . The error in
this scheme is of third order in At and Ax . However, this has the

disadvantage of being a three-time-level equation, A similar leap~frog
scheme is used for advancing particles in the particle simulation models

described in Section 2.3.
12



The nonlinear term, Eaf/av , in the Vlasov equation can be treated
in a similar way to the v3f/3x term, However, when the E3f/av  term
is included, the difference equation may not be stable, even if the
free-streaming part is approximated by a stable difference scheme, In
studying two-stream instability for electrons streaming through mobile
ions, Kellogg used a stable difference scheme for Eq. (2.6), but did not
succeed in finding a stable scheme for Eq. (2.4), because of the effects
of the nonlinear term, Eaf/av .2 Various more sophisticated schemes
have been pursued to minimize and suppress the effects of the numerical
instability, inecluding smoothing of the distribution function, and
have been used successfully.s’9 However, no general method of cirecum-
venting this instability has been established; it depends very much on
the nature of the problem under study,

The difference equation for the Poisson equation [Eq. (2.5)] is

EY =", ﬁz avE S (2.14)
p+1 P e, P,q
i q

where Av is the velocity grid spacing, E; = E(pAx,npt),
n
fp q = T(pAx,qAv,nAt) , and the subscript i in f , denoting particle

species, has been suppressed. For certain boundary conditions, it is

convenient to solve

2
492 _ _p_ (2.15)
dx2 E0
wvhere E = - dg/dx . A difference approximation to Eq. (2.15) is
n n n (Ax)z n
- 2 = - . 2,16
Ppr1 Pp * Fpo1 o Pp ¢ )

13



The solutions of Egs. (2.14) and (2.16) are siraightforward, and cause
no numerical instability.

It is worth noting that the difference schemes mentioned above are
"explicit" schemes, i.e., all the variables at the n-th time-step are
expressed in terms of the variables at the (n-1)th time-step, or

"implicit" scheme, a variable at the n-th time-step is

earlier., In an
expressed in terms of other variables at the same time-step and earlier,
The use of the implicit scheme may make the difference eguations stable,

but since a set of simultaneocus linear equations has to be solved at

every time-step it may be prohibitively expensive,

2.2.2 Transform Methods

Transform methods constitute an obvious alternative to the
finite difference method. Transformation of the variables to a different
set offers the possibility of avoiding some of the difficulties
encountered in the finite difference method., Expansicn in terms of
orthonormal eigenfunctions is a well-known mathematical technique,
Fourier transformation being one of the simplest and most extensively
used.

Among the advantages of using the transform method are the elimina-

tion of the partial derivatives in x and v , and of integration in

v . The resulting algebraic operations are much simpler to deal with
numerically than differentiations and integrations, Another advantage
is a relief from numerical instability. This depends on the choice of
transformation, and there is a possibility that a different type of
nwnerical instability is introduced. The transform method reduces

Egs, (2.4) and (2.5) to a set of ordinary differential equations in

14



time, or to a simpler set of partial differential equations, depending
on the transformation employed. The ordinary differential equations
can bé solved much more easily than the partial differential eguations,
Even when one of the partial differentiations is left in the equations,
they are easier to handle from a numerical stability point of view than
the original equations,

In the following, three methods will be described. They are the
Fourier-Fourier method, the Fourier-Hermite method, and the Power
Series Expansion method. TFor simplicity, we shall consider a one-
dimensional, elecirostatic, homogeneous plasma, without externally
applied fields, and assume that the ions form an immobile, neutralizing,
hackground charge. For the rest of the present subsection, we shall
use dimensionless units for length, velocity, time, etc. Equations (2.4)
and (2.5) can then be written as

%§+v%i—li‘.—§-§=0, %:(l—ﬁdv), (2.17)

where x 1is in units of the Debye length, hD v is in units of the

thermal velocity, v, , t is in units of the reciprocal of the plasma

t

frequency, l/wp , and E and f are also dimensionless variables,

1
Fourier-Fourier Expansionl’ 0: The distribution function, £ is

¥

expanded in a Fourier series in x and Fourier transformation in v

r

is ecarried out according to the following relations

15



[-~1

[=-]
£0,v,0) = 3= 3 exptiakg [ dy expC-ivy) B

N=-co -0
(2.18)
= L
F (y,t) = fdv exp(ivy) %f'dx exp(-ink x) f(x,v,t) ,
- 0

where kO = 2n/L , and L is the length of the system. The electric

field, E , is expanded in a Fourier series in x

-]
E(x,t} = :E: En(t) exp(inkox) ,
N=2—eo
(2.19)
L
1 ’ .
En(t) =1 fE(x,t) exp(—-zn.kox)dx
O
By use of Eqs. (2,18) and (2.19), we obtain from Eq. (2.17)
3 3 _y _
at Fn(Y:t) + nkO ay Fn(Y,t) ko cn(Yst) =0,
(2.20)
- 1nkoEn(t) = Fn(O,t) ,
where Cn(y,t} is defined by
[= 4]
1
€t = D5 ZF (0,0 By, 0) . (2.21)

M=—cx

Equations (2.20) and (2,21) constitute the system of equations
which is to be solved on the computer, Note that the integral over the
distribution function in the Poisson equation [Eq. (2.17)] has disappeared.

The electric field component E0 is not determined uniquely by these

16



eguations, but is determined by the boundary conditions. For a periodic
sysﬁem without external excitation, we may put E0 = 0

Equation (2.20) may be solved by integration along characteristics

given by

1
-t = -y (2.22)
O

These are straight lines in the (t,y) plane, as shown in Fig. 2.5,

Wion el

-\
t,y)
'
_ CHARACTERISTIC
Ay | WITH SLOPE nkg
(t-At, y-nk,At)

= 1

FIG. 2.5. Characteristics of Eq. (2.20) in the (t,y) plane,

The simplest numerical scheme is given by
F (y,t) = F (y - nkoAt, t - At)

At

* g (7 - nkAT) C (y - nkAt, t - At) . (2.23)

o

17



: . . 11
For an improved approximation, we may use the iterative formula,

F(S+1)(y,t) = F(y - nkGAt,.t - At)

(s)

n

At

* Eﬁ; (v,t)], (2.24)

[(v - nat) € (v - nkAt, t - At) + ¥C

where superscript s denotes the number of iterations carried out.
Equation (2.24) is obtained by replacing the last term in Eq. (2.23)
by the average of the values of Cn at the grid points (t,y) and

{(t - At, y - ﬂkoﬁt)- Note that values of y in Egs, (2.23) and (2.24)
are chosen to fall at the grid points, Values of y -~ nkOAt de not
fall at the grid points unless Ay and At are chosen such that

Ay = kOAt . Therefore, some interpolatiog scheme must generally be

used.

SB8ince it is not feasible to include an infinite number of terms
in Eq. (2.18) in the calculations, nor to cover the whole y-space, the
Fourier expansion is truncated at nm , gnd a cut-off for Fn(y,t) is
introduced at y = % Yy - This is eguivalent to a smoothing of the

distribution function, f{x,v,t), expressed by

. -] &
f(x,v,t) = f wv(v’)dv' fwx(x')f(x-n- x', v+ v/, t)x’ (2.25)
e -

where ?(x,v,t) is the smoothed distribution function, and wx(x) and

wv(v) are weighting functions given by

n
m .
1 .
wx(x) =1+ 2 :E: cos nkox . wv(v} = ;; sin y v . {2.26)
n=1

18



The cheoice of the cut-off wvalues, n and y must be made so that the
m .
half-widths of the weighting functions are small compared with charac-
teristic lengths and velocities in the plasma. The truncations do not
. . g 10
cause numerical instability.

3,10,12,13

Fourier-Hermite Expansion Instead of the Fourier trans-

form in velocity used in the previous method, a Gram-Charlier series

in velocity may be introduced,
[==] o vz
fx,v,t) = Z Eexp(lnkox) exp (— ?)hm(v)zmn(t) s (2.27)
=~ M=0
where the hm(v) are the orthonormal set of Hermite polynomials defined

by

h(V): 7
m [(2w)1/2m111/2 dv

m 2 m 2
(-1) exp(v /2) d . exp( ; ) . (2.28)

Again ko = 2ﬂ/L , and L 1is the length of the system, Electric field
is expanded in a Fourier series according to Eq. (2.19). Bubstitution
of Egs, (2,.19) and (2.27) in Eqg. (2.17), and use of the recursion
relations and orthogonality properties of Hermite polynomials and of

Fourier series, yields

% Z_ (1) + 1nk0[m1/2 Zyy 00 + (4 1)/2 Zm_l_l’n(t)]

1/2
+m }E:En_q(t)zm_l’q(t) -0,

=-—c

(m=1,2,3,...;n=0, £1, +2, ...}, (2.29)

19



d

S5 Zog(t) + inkgZ  (t) = 0, (n=0, £1, £ 2, ...), (2.30)
, 1/4
E_(t) = 31%%%——— Zon (F) (n # 0), (2.31)

where we have put Eo(t) = 0 . The condition for reality of f£(x,v,t)
regquires that

*

Zon () = By _ (0 (2.32)

Combination of Eqs. (2.29)-(2.31) provides a set of nonlinear,
ordinary differential equations for the Zmn(t) ., These may be sclved
step by step, typically by the Runge-Kutta method, or some improved
technique.14

As in the Fourier-Fourier method, the infinite series expressed by
Eqs. (2.19) and (2.27) have to be truncated. However, unlike the Fourier—
Fourier method, the truncation of the infinite series [Eqs. (2.27)] in’
velocity-space causes serious difficulties. Truncation of the Fourier
series can be justified provided that the perturbation amplitude is
small, However, suppose that the Gram-Charlier series is truncated ati
m=M, From inspection of Eq, (2.29), it is clear that the expression

for dZmn/dt depends on Zm+ (t) . The truncation econsequently

1,n

intreduces serious inaccuracy, and therefore instability, when Z

M+1,n(t)
becomes large. Since ZMn(t) is large by the time t = Ml/z/(nko) ,
the results of the computation are valid only for shorter times. This
imposes a severe limitation on the usefulness of this method, A few
attempts have been made to remove it, and the reader is reférred to the

relevant 1iterature.3’lo'13
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Power Series Expansionls: Consider an expansion of Fn(y,t) in

Eq. (2.18) in powers of y , given by

@ T

m y
F Ay, t) = E 8 08y exp(— 5 ) , (2.33)
=0

where the g, Bare arbitrary, The exponential factor improves the con-
vergence of the series if it is truncated in the y-direction. Substi-
tuting Eq. (2.,33) into Eq. (2.20), and collecting equal powers of y ,

gives

g g
d m-1 m+1
dt %mn " nko[ =4 am—l,n -+ 1) g anwl,rJ
m m
[+4]
g
= 2
- a_ a =0, (2.34)
kogm 0g m-1,n-q
q=-
(n=0,+1, 2, ...;m=20, 1, 2, ...)

This equation can be solved in a similar way to Eq. (2.29) obtained in
the Fourier-Hermite method. It should be noted that the coefficients

a . may be shown to be equal to the Zmn in the Fourier-Hermite method
except for a complex factor,

In the numerical integration, Joyce et al, have encountered the
difficulty associated with the truncation of the infinite series in
velocity space that was found in the Fourier-Hermite method.15 However,
they found that numerical solution of the linearized version of Egq., (2.34)

gave a very regular pattern for the amplitudes & for large m as

L

shown in Fig. 2.6, The coefficients seem to be sampled points of a
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continucus function im m , This would lead to a guess that the

{ + 1) coefficient may be extrapolated by polynomials, and that it

m
max
may be possible to close the system expressed by Eq. (2.34)., This
method turned out to work well for the linear Vlasov eguation, but
Joyce et al, found that for nonlinear cases its success depends on the
problems treated, Thus, although there is improvement over the
Fourier-Hermite method, in the sense that it stabilizes the integration

scheme, the method is still not satisfactory for simulations carried to

long times.

umxI03

FIG, 2.6, An example of amplitude a n Vs, m .
m!

(Adapted from Fig, 1 of Ref, 15.),
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2,3 Particle Simulation Model

A number of authors have developed schemes which reduce the high
level of fluctuations characteristic of the electrostatic sheet model,
without affecting the collective behavior of the plasma.ls_za The
reduction of fluctuations in these schemes is achieved by smoothing the
interaction forces bhetween the charge sheets. The smoothing reduces
the short wavelength fluctuations arising from discontinuities in the
electric field generated by the sheets, but leaves collective phenomena
associated with long wavelengths unaffected. Since the smoothing may
modify the physics of the plasma, and perhaps introduce spurious effects,
it is important to examine very closely the detailed behavior of the
model, In this section, we shall describe various electrostatic plasma
models incorporating smoothing procedures, and discuss some of the
physical consequences of the smoothing relevant to the hybrid approach
to be treated in Section 3. All of these schemes can be used for multi-
dimensional simulations, with or withoqt an externally applied magnetic
field, but the discussion here will concentrate on the one-dimensional
case without magnetic field.

2.3.1 Zero-Size-Particle and Nearest-Grid-Point Method

In this method, instead of treating the space variable, x ,
as a continuous variable when computing the electric field, the system
is divided into an arbitrary number of cells, and the electric field is
computed only at grid points corresponding to the centers.of the cells,
The charge distribution from which the electric field is calculated,
through the Poisson equation, is obtained by accumulating the charge

of all the sheets in each cell at the center, regardless of their
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positions within the cell, In advancing in time, ali of the particles
in one cell are accelerated by the electric field defined at the grid
point, regardless of their positions. Note, however, that the particle
position is not discretized, but is a continuocus variable, This scheme
was used by Burger et al. in a study of randomization mechanisms in a
collisionless plasma.16 Hockney applied it in a two-dimensional simu-
lation of anomalous plasma diffusion across a static magnetic field,
using a charge rod m.odel.l7’18

In one dimension, the electric field calculation is gquite simple,
The charge distribution on the grid points is obtained by counting the
number of electron and ion sheets separately in individual cells,
multiplying them by the surface charge density, and subtracting the
results, The electric field at a given grid point is then taken at the
middle of the jump in electric field occurring at that grid point. When
ions can be assumed to be immobile, equal numbers of ion sheets are
assigned to each cell, and only the number of electron sheets needs
to be counted,

Advancing particles in time through the Newton equation may be done

by the leap-frog scheme, In one dimension this may be written, for an

electron sheet, as

e
_ - _ 2.35
vn+1/2 vn—1/2 m, En at xn-+l xn + vn+1/2 at ( )

where v and v denote the velccities of the sheet at a

nel/2
half time-step ahead of, and behind, the n-th time~step, respectively,

n-1/2

xn and En are the sheet position and electric field at the n-th
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time-step, me and e are electron mass and charge (magnitude), and At
is the time-step., This scheme is widely used because of its high order
accuracy [0 { (at)s}] .

The ZSP-NGP scheme not only reduces fluctuations, but also
makes the computation much faster than for the simple sheet or rod model.
Furthermore, the gain in computational speed is made by using integer,
rather than floating-point, arithmetic on the computer. In most
computers the integer addition and subtraction are faster than the
floating-point addition and subtraction, Since the main part of the
algorithm can be written in terms of additions and subtractions, computing
time can be saved by normalizing and expressing the particle positions
and velocities, and the charge and electric field, in terms of integers,
The reader is referred to the relevant papers for more details.27’28

The reduction of fluctuations can be understood as follows: the
interaction force between a charge sheet located at a grid point, and
another sheet separated by distance, x , will be as shown in Fig. 2.7(a}.
The method eliminates forces acting in close encounters, whereas in the
simple sheet model there is no zmero-force region, This helps to reduce
collisional effects, and fluctuations at short wavelengths, but does not
affect the collective behavior due to long range forces,

The force between two charge rods is illustrated in Fig. 2.7(b).
It is a function varying in steps. At large separations, it is a good
approximation to the force between two line charges. At close separa-
tions, however, the force vanishes, as in the one-dimensional case,

whereas the force between two line charges would tend to infinity.
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- ZSP-NGP MODEL

FIG. 2.7(a). Interaction force in ZSP-NGP model, between a
charge sheet at a grid point, and another sheet at distance

x apart, (Adapted from Fig. 5 of Ref. 29,}.

~+—LINE CHARGES
—1— MODEL FORCE

Fo) 7 N N Y Y T | . oS
0 5 10 15

FIG. 2.7(b). Interaction force in ZSP-NGP model, between two
charge rods distance r apart, r 1s in units of cell

size h ., (Adapted from Fig. 1 of Ref, 17.).
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Although the ZSP-NGP method has been used Successfully,le—ls the
Stepped force law shown in Fig., 2.7 may not be accurate enough, and the
zero-force region may smooth out small amplitude oscillations, even for
long wavelengths, The discontinuity in the electric field still produces
undesirable enhanced fluctuations. One way to relieve these difficulties
is to increase the number of particles and to use a finer grid, 1In
bractice, however, it is not always feasible to increase the number of
particles and grid points to a satisfactory level, The finite-size
particle models which we shall discuss next have been developed to over-
come these difficulties, particularly in the simulation of high density
Plasmas, We shall describe the Cloud-in-Cell method, Particle-in-Cell
method, Gaussian Cloud method, Multipole Expansion method, and Lewis'

method,

2.3.2 Cloud-in-Cell and Particle-in-Cell Methods

It is natural to introduce the idea of charged particles of
finite dimensions, for the purpose of improving upon the ZPS-NGP method,
In the Cloud-in-Cell method, the discontinuities are mitigated by
considering clouds of uniformly distributed charge which are assumed to
be tenuous, and to be able to pass through one another.l9 The center
of the charge cloud is taken to be the particle coordinate, and a
spatial grid is used for computing field quantities. Key features
of the method are the prescription for determining the amount of charge
toc be assigned to the grid points (charge-sharing), and the force on a
cloud from field guantities on the grid points (force-sharing), The
charge is distributed to neighboring cell centers (grid points) in

proportion to the areas the cloud occupies in the cells., The charge
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density on the grid points thus accumulated is used to compute the
electric field. The force on a cloud is calculated by averaging the
contributions from the neighboring grid points with weightings propor-
tional to the areas in the corresponding cells occupied by the cloud.

For example, in the one-dimensional case shown in Fig, 2.8{a), the

l—H—>! & Ax>
) ]
+— 2N+
i-1 i i+
(a) ONE DIMENSION

|1 Wikl i+ ]

|
s
——t—t

(b} TWO DIMENSIONS

FIG. 2.8. Finite-size particle located in a grid. Shading shows
assignment of charge density to grid points in CIC model.
(a) Ax 1is cell size. H is particle size,

(b) Ax and Ay are cell sizes, A is area of a particle.

charge assigned to each grid peint is given by

]

a
i 141
Py = pc(ﬂ_)' Pity = Pc( H ) 2p+ 3 =0, (2.36)
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where Pe is the charge density of the cloud, H denotes the size of
the cloud, and ai represents the portion of the cloud occupying the
i-th cell. The extension to the two-dimensional case is shown in

Fig. 2.8(b). The charge assigned to each grid point is given by

_ ai,j) _ ai+1,j)
Pi,j 7 Pel™& : Piv1,3 ™ Pe\T A ’

a
i+1, j+1
1,;)‘

_ ( 4y, 5+l (2.37)
Pit1,541 T Pe\™ A ,

a A s

+ =
1,5 T2, T %, 54 T By g

where A denotes the area of the cloud, and a, represents the

i,3
portion of the cloud occupying i, ]) celi.

The cloud size may be either larger or smaller than, or equal to,
the cell size, It is chosen so that the particle dynamics can be
adequately represented for the problem of interest, This will be clear
from Fig. 2.9, which shows the density assigned to grid point i for
clouds of various sizes moving in the x-direction. As the cloud
size increases beyond the cell size, the resclution decreases, because
the cloud density is held constant over a distance larger than the

shortest resolvable wavelength, i.e. the cell width,

The force con the cloud is given by,

a
1
F = pc Z T Ei {(one dimension)
i (2.38)
a .
Fa pcz :,J -E-:-:I.,j (two dimensiona)
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"FIG. 2.9. Sketch of charge density assigned to grid point
i as a finite-size particle moves in x-direction, The
size varies from 0 to 2Apx. The horizontal axis repre-
sents the position of the center of the cloud. (Adapted
from Fig, 3 of Ref, 19,).

where Ei {or E&j) is the electric field at the grid points (see
Fig. 2.8). This force-sharing scheme produces no self-force if it is used
together with the charge-sharing scheme just described. If this charge-
sharing scheme were not followed, the force averaging could lead to
incorrect acceleration of clouds.lg’29

The interaction force between a cloud fixed at a grid point, and
another cloud is plotted as a function of separation in Fig. 2.10, It
will be noted that the interaction is much smoother than in the ZSP-NGP

method, and that the zero-force region is eliminated. The CIC scheme

consequently produces less collisional effects than the simple sheet
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FIG. 2.10{a). Interaction force in CIC model, between a
cloud at a grid point and another cloud at distance x

apart. [H = Ax]. (Adapted from Fig, 6 of Ref, 29.).

FIG. 2.10(b). Interaction force in CIC model, between a
positive charge cloud at a grid point and a negative charge
cloud, at distance x apart but with the same y

coordinate, [HK = Ax], (Adapted from Fig. 4 of Ref. 19.).
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model, and is better able to simulate small amplitude oscillations. It
has been observed by Birdsall and Fuss that the CIC meihod, combined
with the leap-frog algorithm, greatly improves the energy conservation
over the ZSP-NGP method for the same number of simulation particles.19
In the Particle-in-Cell method, proposed by Morse and Nielson, the
charge is assigned to each cell by distributing the charge of a particle
between the nearest two cells according to a linear interpolation,zo’21
The electric field is then calculated from the resulting charge distri-
bution on the grid points, in the same way as in the ZSP-NGP and CIC
methods, The force on a particle is obtained by calculating the electric
field at the particle positiion by linear interpolation between the
nearest two cell centers. It is easily seen that this scheme is a

special case of the CIC scheme, with the particle size equal to the

cell size.

2.3.3 Gaussian Cloud Method

Instead of a uniform charge distribution, in this method a

cloud is supposed to have a Gaussilan charge distribution,

{x - x )2
(x) Pe exp 1 (2.39)
[ = - —— ’ .
2 (2rra)/? 282

where x; is the position of the center of the cloud i and a

represents the one-dimensional size of the cloud.
To compute the electric field from a given distribution of charge,

it is convenient to work in Fourier-transformed space rather than in

coordinate-space, i,e. in k-space rather than x-space., The Poisson
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equation then simplifies to an algebraic form, and is handled more
easily. The Fast-Fourier-Transform technique can be used to speed up
the computation.30

A model proposed by Dawson et al. makes use of the foregoing ideas

in the following way.22 The electric field generated by a Gaussian

cloud is obtained by the Fourier transform,
E(x) =fE(k) exp(ikx)dk , (2.40)
where E(k) is given by

4npc k2a2
ikE(k) = W exp | ~ 2 + lkXi . (241)

The force on particle i due to particle Jj is then given by

Fij =fEJ_(x)pi(x)dx

2. 1 . 2 2
ZchfE expl:lk(xi - xj) - k"a" Jak . (2.42)

The integral over k-space is replaced by the finite sum

F,. = 2pcz % exp(-k2a2) sin kG - %)) (2.43)
min

where k = 2mu/L , n is an integer, and I, is the length of the

system. To advance particle i in time, the total force on it is cal-

culated by summing the contributions from all other particles, and is

assumed to be constant during a time-step. The leap-frog scheme may be

used in this model.23 As will be shown in Section 2.3.6, the
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fluctuations with short wavelengths can be reduced substantially below

those in the simple sheet model as the value of a increases,

2.3.4 Multipole Expansion Method

The multipole expansion scheme was developed by Kruer and
24 . _ . .

Dawson, It was used by Denavit and Kruer, and compared with numerical
solutions of the Vlasov equation for two-stream instability and sideband

11
instability, Close agreement was obtained between the results of
the two methods, Consider a charpe cloud with an arbitrary charge
distribution and a spatial grid. The location of the center of the

particle is defined by
X, = X, + 6xi , (2.44)

where xGi is the nearest grid point location, and 5xi is the particle
coordinate relative to xGi . The Fourier transform of the cloud charge

density, pi(x), of particle 1 is

pi(k) =fpi(x) exp(-ikx)dx

Il

S(k) exp(-ikai) exp(-ikaxi) , {2.45)

where S(k) is the form factor, which is the Fourier transform of the

shape factor given by
S(x - x. ) =p.(&x) . (2.486)
1 1

Assuming kaxi << 1 , we may expand pi(x) as follows

pi(k) = S(k) exp(-ika (1 - ikéxi S (2.47)

i
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This is equivalent to replacing the particle centered somewhere in the
cell by a particle centered at the nearest grid point, plus a dipole
there and higher-order multipole terms. Summing over a collection of
particles, and inverse Fourier-transforming the Poisson equation, yields
the electric field at the grid point,

To compute the force on a particle, given by

Fi = fE(x)pi(x)dx , (2.48)

we expand - pi(x) as follows

pi(x) = 5(x - xi)
= 8(x - Xay ~ éxi)
!
= 5(x xGi) 5xiS (x xGi) + eu. , (2.49)
where 8’ denotes a derivative with respect to x ., Integrating by

parts yields

F, = fE(x)S(x - x.)dx + GxifE'(x)S(x X dx oL

‘ (2.50)

Physically, this means that the force on a particle may be represented

by its monopole times the electric field, plus the dipole moment times

the derivative of the field, plus higher-order contributions,

The scheme just outlined is wvalid only if kmaxéxi << 1 , In order

for this to be satisfied, the particle size, H , has to be larger than
the cell size, AX , because 5xi =< Ax/z and kmax Ha~ 1l . In practice,

the expansion is truncated at the dipole term, and a particle size of

several cell-lengths is necessary, i.e if the particle size is

"

comparable to the cell size the simulated behavior of short wavelength
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perturbation is likely to be inaccurate. When the short wavelength
components are not important, it may be adequate to use this scheme

even for H ~ Ax .

2.3.5 Lewis' Method

Iin the simulation of plasma phenomena, it is important to
check whether the model conserves energy. If there is no external
excitation, the total energy of the system should remain substantially
constant during the simulation run, Otherwise, it is to be suspected
that nonphysical effects are being introduced. There 18 no guarantee
that the models described so far are energy~conserving, Lewis has
presented a general method for deriving numerical approximation schemes

which guarantee energy conservation, 5,26

It is based on a Lagrangian
formulation via Hamilton's variatioconal principle., The CIC method is
closely related to a special case of the algorithms based on this
formulation, The Lewis method serves to establish both the theoretical
basis for the use of various models in plasma simulation, and to pro-
vide an alternative viewpoint on the problems involved, We shall
outline the method and show how the energy-conserving version of the
CIC scheme is derived by Lewis.

For simplicity, we consider a one-dimensionzl, electrostatic

plasma with no externally applied fields and neutralizing immobile ieons.

The Lagrangian for this system is

where X[= X(x’,v’,t)] describes particle trajectories as functions of

m x°

+ %(X,t)} + -;——ﬂfdez(X,t) , (2.51)
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the time, t , initial position, x’, and veloeity, v’ , the dot denotes
differentiation with respect to t , f£(x,v,0) is the initial distribution
function, ® is the electrostatic potentisl, and E = —a¢/ax . VWe

approximate ¢ and X by finite series

Nl NZ
B, t) = 3 a (DB (), X&v,0) =3 7 (0K L),
n=1 {,:1

(2.52)

where Qn(x) and XL(Xl,V’) are linearly independent basis functions,
and Qn(x) must satisfy the boundary conditions, Substitution of

Eq. (2.52) into Eq. (2.51) provides a new Lagrangian which is &
function of the generalized coordinates, o 7£ , and the generalized

. Applying Hamilton's principle,

t
2

5f£dt=0, (2.53)
4

for arbitrary variation of o and 7& , we obtain the Euler-Lagrange

velocities,

1

equations,
d (a.s) ag ag
—_— = - =0 _— = 0 . {2.54)
dt ’
%7, &y .o}
These are the egquations which describe energy-conserving numerical

approximation schemes, It remains to specify functiouns @n and X

£

Let the initial distribution function be a sum of the Dirac delia-

functions,
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F(x,v,0) =:E: x ~ x) §(v ~v.), (2.55)
i
where X and v, are the initial position and velocity of the i-th

particle. Choosing a set of X&mfunctions as

X&(x',v') = (2.58)

0 (otherwise) |,

implies that the initial conditions on the {(t) are
1

%, 7,(0) = v, . (2.57)

0) =
7L( )
Clearly, y{(t) is the position of the J}p-th particle at time t . To

obtain an energy-conserving version of the CIC scheme, it is convenient

to take @n(x) to be

—%-[x - (n-1)n] [{(n-1)h € x < nh],
§ (x) = '—%—£(n+l)h - x] [nh < x £ (a+L)n], (2.58)
0 [otherwise] ,

where h = L/(Nl+l), and L is the system length. With this set of
functions, Oh(t) is the value of potential at x = nh
Substituting Eqs, (2.56) and (2.58) into the Euler-Lagrange equations

[(Eq. (2.54)] gives

ny, = e, 4 (08{y, (0], (2.59)
i
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(t) - 20 (t) + o (1)

h2

_ an+1 1 -

Po e
L

=]

where Q{(x) = (d/dx)@i(x) , and Po is the background charge density.
Equation (2.59) is the equation of motion for the t-th particle and

Eg. (2.60) is the central difference approximation for the Poisson
equation. It is seen that Eq. (2.60) is identical to the approximation
for the Poisson equation in the CIC method. Egquation (2.59) differs
from the equation of motion in the CIC method only in that a piecewize
linear function is used in place of éityt(t)] . The CIC method con-
sequently does not conserve energy., Equations (2,58) and (2.60) are
the energy-conserving version of the CIC scheme. It should be noted
that the energy conserving feature of this method is realized onl& in
the limit of a vanishingly short time-step. In practice, the time-step

is small but finite, so the energy conservation is not exact,

2,3.6 Finite-Size Particle and Spatial Grid Effects

In this section, we shall consider the effects of intro-

ducing finite-size particles, and a spatial grid into simulation models,
. 31 , 29
We shall follow the analyses given by Langdon and Birdsall and
consider, first, how longitudinal plasma oscillations are affected, and
second, how the fluctuations are reduced.
In general, finite particle size enters the analysis via the form

factor, S(k), i.e. the Fourier transform of the shape factor of the

charged particle distribution, S(x) ,

S(k) = fdxS{x) exp(-ikx), {2.61)
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Using the form factor BS(k) , the charge density, current density, and

force in the finite-size particle model can be written as,

= - t
ok, 12 S(k)pp(k,t) ' J (&, 1} S(k)Jp(k, >,
Fc(k,t) = S(-k)Fp(k,t) , (2.62)
where subscript p in Py Jp , and Fp is affixed to emphasize

that they are for a system of point particles. These relations suggest
that the theory of finite-size particles may be obtained by multiplying
the charge in the point partiecle theory by S(k) . This is indeed so

for the longitudinal plasma permittivity: for a one-dimensional plasma

with finite~size cloud, we have

k) |
e(kw)—1+5(k)—f . (2.63)

w-kv

where Landau's prescription applies regarding analytic continuation,
For a Maxwellian velocity distribution, and CIC-type finite-size

particles, Eq. (2.63) becones
(k) W
€ (k:w) = ( ’
P 21;2)\2 51/ zkvt

S(k) = ﬁ—“ﬁﬂ(;}; 2)

where H is the size of the cloud, and Z’ denotes the first derivative

(2.64)

-

of the plasma dispersion f?.mc:ticm.d2 For a Gaussian cloud, such as is

used in the Gaussian Cloud method, the form factor becomes

S(k) = exp(—k2a2/2) . (2.65)
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Note that in the limit of vanishing size, S(k) tends to unity and the
point particle theory,i.e. the simple sheet model,is retrieved,

We have obtained solutions of the dispersion relation [€p(k.m) = 0]
for point particles, and for finite-size particles, They are plotted
in Fig. 2,11, It is clear that the long wavelength oscillations are
little affected, while the short wavelength oscillations are strongly
modified,

When spatial grid effects are taken into account, the bermittivity

) . 31
is given by

1 2 K [0

¢ (k,w) =1 - [s (x,)|" &=z’ ,
P 21{2?\_2 Z e £ k{: 21;211( |V

D 4 , 2t

_ sin (kpax/2) _ sin (kpax/2)
se(k) = 5(k) (kpx/2) ' K=k (kpax/2) !
sin kAx 217
K:k—‘“ﬁ— y k‘tzk -{’-A-; ' (2.66)

where J is integer,

This dispersion relation has been studied in detail by Langdon,31
who has shown that small values of lD/Ax lead to instability. This
is due to the coupling between waves with different wavelengths through
the spatial grid. He has also shown that when AD/Ax =1, the insta-
bility is negligible, and the [ = 0 term in the summation in Eq. (2.66)
is dominant. The result of our computation for dispersion characteristices
with both finite-size effects and spatial grid effects taken in account
is shown in Fig. 2.11, Only the { = 0 term has been retained in

Eq. (2.66). It will be seen that the spatial grid exerts an additional
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FIG, 2.11. Solutions of dispersion relation,

(Eq. (2.66)].
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smoothing effect on the dispersion characteristics, modifying the
behavior of short wavelength oscillations in a similar way to finite-
size effects, 1eaving the collective behavior at long wavelengths
almost unchanged.,

Finally, we turn our attention to the thermal fluctuation spectrum,
The fluctuation spectrum of the electric field in k-space for a

point particle plasma is

2
{(E. Y kT
kK® __B ( 1 ) , (2.67)

8 2 2.2
k
1+ kD
where kB is the Beoltzmann coanstant, and T is the temperature of the
plasma. Neglecting the coupling between perturbations due to the grid,
the fluctuation spectrum for a cloud plasma in a gridded system is

3
given by 3

l:s

&)

= (e < , (2.68)
B 2 (K ) (n/k + szi/si(k)) .

where k , K , and Se are given in Eq. (2.66). In Fig. 2,12, the
spectrum computed from Eq, (2.68) is plotted for the CIC finite-size
particle model, and for the Gaussian Cloud model in a gridless system
{Ax = 0). The thermal fluctuation spectrum for the point particle
plasma [Eq. (2.67)] is also shown for comparison, Note that the
comparison in Fig, 2.12 is for the same number of particles. The
reduction of fluctuations in the short wavelength part of the spectrum
is apparent. An interesting feature of the plots is that the CIC

spectrum has zero-energy holes, corresponding to modes satisfying

S(k) = 0 , while the Gaussian Cloud model does not,
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(2.68)].

(Eq.
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The modification due to spatial grid effects in the CIC model is
also shown in Fig, 2.12., It will be seen that introducing a spatial
grid reduces the short wavelength fluctuations further, and creates
additional holes in the Spectrum,

The analytical results of Egs, (2.66) and (2.68) were verified
by Okuda in computer studies of the CIC model.34 Okuda also performed
a series of simulations to study the numerical instability due to a
spatial grid,35 and confirmed that the simulation is stable when the
Debye length is comparable to, or larger than, the grid size, as
predicted by Langdon.31

It is evident from the foregoing considerations that finite-size
particle models are capable of simulating the collective behavior of
pPlasma, with reduced fluctuation level, by choosing appropriate particle
and grid sizes, However, the reduction in the fluctuations in these
methods is not more than about 10 dB below the simple sheet model. It
is consequently still very noisy compared with the practical Plasmas
being simulated., In Section 3, we shall describe a method which provides
a fluctuation level several orders of magnitude lower than the finite-

size particle models,
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3. LOW-NOISE HYBRID APPROACH

3.1 Comparison between the Vlasov and Particle Simulation Approaches

Before describing the hybrid approach used in our work, it is
convenient to compare here the two basic approaches to computer solution
of plasma problems discussed in Section 2, We shall do so by considering
how well the plasma dynamics can be represented, and how easy the com-

puter solution is to accomplish,

3.1.1 Plasma Dynamics

The Vlasov appreoach brings into question the validity of the

Vlasov eqﬁation itself: the Vlasov equation is a description of a
plasma which is correct only to lowest or&er in the plasma parameter,
(nxs)_l , where n is the number density, and kD is the electronic
Debye 1ength.36 As a consequence, it describes collective effects due
to long-range Coulomb forces, but does not include particle discreteness
effects such as particle-particle encounters, BSince its soclution con-
tains no thermal fluctuations of macroscopic guantities, such as the
electric field, charged particle density, etc., the behavior of very
small amplitude waves can be simulated in a quantitatively accurate
manner,

In contrast, the particle simulation model, or 'particle code’™ as
it is often termed, incorporates the full dynamics of particles and waves,
including discreteness effects. However, fluctuations are at an
unrealistically high level, since the number of particles that a computer
can handle is many orders of magnitude less than in typical plasmas.

These large fluctuations can obscure the small amplitude oscillations

described by linear theory. Hence, quantitative resulis are not easily
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available in the linear régime, even though the qualitative behavior
agrees with theory; the particle code is better suited to simulation in
the nonlinear régime, where the ratio (wave field energy/particle thermal
energy) > 0.01. 1In this respect, it should be noted that the expansion
methods discussed in Section 2.2.2 may limit the amplitude of the
perturbations that can be handled in order to assure the rapid conver-
gence of the expanded series, It should also be noted that the expansion
methods impose a restriction on the class of perturbations that can be
treated. For example, in the Fourier-Hermite method of Section 2.,2.2,
the velocity distribution function is automatically an entire function

of velocity.3 Consequently, the problem must be such that the
distribution function is describable in terms of an entire function of
velocity; we could not consider the evolution of a delta-function

distribution.

3.1.2 Ease of Computation

From the computational point of view, it is much more
difficult to solve the Vlasov equation numerically than to soclve the
Newton equation. Numerical instability such as is encountered in the
finite difference method, and the Fourier-Hermite method, is difficult
to overcome. Solution of the Newton equation is not subject to this
difficulty. 1In addition, the algorithm for solving the Vlasov equation
is more complicated and lengthy than for the Newton equation,

One point of practical importance is that the Vlasov approach
enables different effects to bhe studied separately. For example, the
linearized Vlasov equation can be solved to study linear behavior alone,
The effects of nonlinearity can then be assessed by adding the nonlinear
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terms. The effect of free~streaming particles can also be studied
independently. This feature of the Vlasov approach helps materially
in understanding the physics of plasmas,

The particle code requires a very large computer memory to store
information on the positions and velocities of the particles, and on
the field variables, since it follows the motion of the particles
step-by-step in time., Even with modern, large, high-speed computers,
simulations in three dimensions may not be economically feasible, since
the number of particles that is needed, to maintain the same level of
fluctuations as in one dimension, has to be increased as N3

In contrast, the Vlasov approach needs much smaller computer
memory for the time-varying field quantities on the grid points, or the
time-varying expansion coefficients, since the velocity distribution
carries information on the charged particles in highly compact form.

To ease the computational difficulties, some combination of the
two approaches would clearly be desirable. This is provided by the
hybrid approach to be described next, It is a particle simulation
model in the sense that the motions of a large number of particles are
followed in time. The particles do not keep their identities, however,
and there are similarities to the Vlasov approach in that the value of
the velocity distribution function is defined on a grid in phase-space,

as in the finite difference methods described in Section 2.2.1.

3.2 Hybrid Approach

Our model is constructed using the CIC model described in
Section 2.3.2. In addition to the usual spatial grid, we introduce a
grid in velocity-space, and represent the particles by points in

48



(x-v) phase-space as shown in Fig. 3.1. The phase-space is conseguently
covered with a rectangular grid of dimensions Ax, Av . The velocity
grid extends from 4 to A\ where vy and v2 are chosen such

that the numbers of particles with velocities in the intervals

v < v, or v> v, are negligible,

In the work of Denavit,6 the Lewis variational methodzs’26 was

used to construct a model, In the Denavit model, finite-size particles
are chosen to have a triangular spatial distribution, instead of the
uniform charge distribution of the CIC model. The numerical scheme
based on that model turned out to be more complicated, therefore more
time-consuming, than our model, In addition, although his scheme is
energy-conserving, it does not conserve momentum, whereas the CIC scheme
is formulated in such a way as to conserve mnmentum.31 The non-conserva-
tion of momentum indicates the existence of self-force, i,e,, a particle
is effected by the force due to the field that is created by itself,
which is nonphysical. The energy-conserving feature of the Denavit
scheme may not be very useful in practice, since energy conservation is
exact only in the limit of a vanishingly small time-step.

In creating a plasma with a Maxwellian velocity distribution, our
model employs the following method, The particles are eqgually divided
into a number of velocity groups. All the particles in one group are
assumed to have the same velocity, v , and mass and charge are assigned
to them in proportion to exp (—v2/2vi) , where v is the electron
thermal velocity. Thig is shown schematically in Fig, 3.1. Since the
charge-to-mass ratio is the same for all of the particles, the accelera-

tion is also the same, One of the advantages of this method of
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generating a Maxwellian distribution by weighted particles is that
improved resolution is provided in the tail of the velocity distribution,
compared with & Maxwellian distribution with identicél particles,

The system is set up at time t = using the gquiet start technique
to be described below, and proceeds as in a CIC model. After a certain
number of time-steps, the distribution function is reconstructed at the
grid points by periodic smoothing, and is interpreted as representing
a distribution of new discrete particles., The motions of these particles
are followed until the next reconstructiocn,

With these procedures in mind, we shall describe the quiet start
technique, and the periodic smoothing, which are essential parts of the
hybrid approach, As proposed by Denavit, they are used to achieve a
very low fluctuation level, and to allow the model to be applied to a

wide range of linear and nonlinear problems,

3.2.1 Quiet Start

The quiet start technique, proposed by Byers, is a method
of eliminating macroscopic fluctuations in a particle code at early
stages of evolution.37 This is done by placing the particles only on
the equilibrium trajectories in phase-space at time t = 0 , As an
example, consider an electrostatic, one-dimensional problem with a
periodic boundary condition, in which the equilibrium particle trajec-
tories are straight lines, v = const, At time t = Q , the particles
are loaded uniformly at the grid points in phase-space, as shown in
Fig. 3.1. We shall assume that the particlés are of finite extent, as
in the CIC method of Section 2.3.2, with extension equal to the spatial
grid size, AX . 8ince the charges are distributed uniformly in
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space, there is no macroscopic electric field at t = 0 . We easily

see that at subsequent times the phase-space looks the same as at

t = 0, except that the centers of the finite-size particles are shifted
in the x~direction by distances depending on their velocities. Thus,
there continues to be no macroscopic electric field unless a perturbation
is applied.

In principle, the quiet start technique provides a noiseless
system. In practice, round-off errors due to the finite number of
digits representing the numbers in the computer introduce sbme fluctu-
ations. However, this level is many orders of magnitude lower than that
in the particle codes. Typically, we have obtained about 60 dB reduction,
This is quiet enough to study linear plasma behavior, and compare its
features with theoretical predictions.

Although the quiet start technique works well at early times, it
eventually causes wave growth; it ceases to be effective after a time,
Zﬁ/(kmAV), where km is the maximum wavenumber possible in the system.6
This breakdown occurs because the velocity distribution of the particles
is being replaced by a set of discrete beams. Such a system is subject
to streaming instability, to be described in Section 3.3, even if the
envelope of the beam density is Maxwellian..38 Periodic smoothing may

by used to combat this instability.

3.2.,2 Periodic Smoothing

Periodic smoothing constitutes a periodic averaging of the

distribution function in phase—space.6 It can be expressed by
f(x,v,t) =I[ f(x',v’,t)wx(x - x’)wv(v - v/)dx‘av’ , (3.1)
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where W and w, are weighting functions for coordinate- and velocity-
Space, f is the averaged distribution function, and the integration is
over the whole of phase-space, The averaging process expressed by
Eq. (3.1) causes diffusion of the distribution function., The weighting
functions are chosen so that this diffusion quenches the streaming
instability without introducing other undesirahle effects, Specific
forms of the weighting functions, and their derivation, are given in
the Appendix,

In particle models with a phase-space grid such as that shown in
Fig. 3.1, the integral in Eq. (3.1) reduces to a sum over the collection
of particles, and we want to find the averaged distribution function,
f, at the phase-space grid points. If f(x’,v’,t) is taken to be the
mass of a finite-size particle, the center of which is located at
(x',v’) at time t , then Eq. (3.1) implies that the value of I at the
(i-j) grid point, (xi,vj), is obtained by distributing the mass of each
particle among the neighboring grid points according to the weighting
prescribed by Y and LA This is a reconstruction of the distri-
bution function from a given distribution of particles, 1In this model,
 the reconstructed distribution function is defined only at the grid
points, and is interpreted as the new particle mass located at each
grid point, Their motions are.governed by the Newton equatiocn, ag in
other particle codes, Reconstruction of the distribution function does
not need to be done every time-step. It is simply done frequently

enough to suppress the streaming instability, as described in Section 3.3.
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3.3 Streaming Instability and Recurrence Phenomenon

In this section we shall discuss two phenomena associated with
the use of the quiet start technique:; streaming instability, and

possibility of recurrence of the initial state.

3.3.1 Streaming Instability

Treating each beam as a continuous fluid of charged particles,
neglecting collisions, and linearizing the cne-dimensional fluid

equations for electrons, yields

av, av . gn av. 3n,
RS E,E—J+Nj?x-=]~+vj§-x—‘l=0, (3.2)
e

where Nj' Vj’ nj, and Vj are zeroth and first order densities and

velocities for the j-th beam, Assuming a solution of the form
A(x,t) = A(w,k) exp[-i(wt - kx)] for the first order quantities, we

have

€
- iwv, + ikV,v, = - — E , - i, + kv N, + kV.,n, = 0 ., (3.3)
J J J me w J 4 J J J (

Coupling Eg. (3.3) with the Poisson equation,

ikE:--e—-z n, (3.4)
€ J
0

J

yields the following dispersion relation for longitudinal oscillations

of the beam system

2 N,
1 = mee — (3.5)
: KV,
e 0 3 (o J)

54



where we have assumed that the positive ions form an immobile neutral-
izing background,

We introduce FJ(V} by
&F (V.) = N.(V,) , V., - Vv, = ) (3.6¢)
F (V) = N (V) 1= 8
where the beams are spaced with equal velocity difference, §

Ecquation (3.5) can now he written as

F
J

2
-k
{w VJ.)

: (3.7)

where wp is the electron plasma frequency, Dawson has shown that,

in the limit § = 0 , Eq. (3.7) may be written as the sum of an integral

and a singular term,BS

2 2
lz;z—pfl’fF(v)dV-—Tk—gF' ()cot (EL:)

wig

ﬂzmiF<w/k)

+ , : {3.8)

5k sinz(wm/aki
where § denotes the Cauchy principal part of the integral, and
F’ = dF/av ,

In order for Eq., (3.8) to have a solution, the seéond and third
terms on the right hand side have to be finite when § — 0 . This
requirement on the third.term yields
Im g =~ + g% ln § , _ (3.9)

which demonstrates the existence of unstable modes, Substitution of
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this, and use of a Maxwellian velocity distribution

F(V) = exp(—V2/2vi)/(2n)l/2Vt , in Eq. (3.8) gives finally,

2 v )
4rr ( t) o ( 2 2nw) 2.2
_ pl-z27 £i==])=21+ kA + 2Z2(2) , (3.10)
(2ﬂ)172 5 sk D

where Z is the plasma dispersion function,32 with =z = w/(zl/zkvt) .

The positive sign in Eq. ¢3.10) is to be used for Imyw > O and the

negative sign for Im y <« O
The dispersion relation expressed by Eq. (3.10) has two complex
conjugate roots for each value of k . Writing wj = Q. + iBj ,

J
gj = Jé/(zl/zvt) yields

_ g€.Im Z(g )
. k6 tan 1 ( 232 d. ) + kj§ ,
1+ k AD + ije Z(gj)

k§ 2 1/2 g2
; *211{1“ (4r"v /27 18) €] (3.11)

oy
I

P 2 2
- % ln([l + kzhﬁ + gj Re Z(gj)} + [Im Z(Ej)] )} .

Each value of j denotes a particular'beam, so there are clearly two
modes for each beam, These are the normal modes of the many-beam system,
with a Maxwellian envelope, for a given wavenumber k . Any small
amplitude macroscopic behavior can be expressed as a weighted sum of
these modes, Equation (3.11) is valid enly in the limit § —» 0 . Note
that Bj vanishes as § — 0

Figure 3.2 is a computer simulation of the behavior of the
streaming instability. The total electric field energy. is ﬁlotted

against time for two cases. In both, the total field energy starts
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growing almost equnentially after a certain period of time, The
observed growth rate is about 0.08%w, for § = v,/8 , and about 0.05m,
for § = vt/ls. From these results, we may conclude that it is possible
to carry out simulations at early times during which the field energy
associated with wave phenomena of interest is much larger than the

total energy of the fluctuating fields., In Fig. 3.2, for example, a
perturbation with electrostatic energy of 10-4 times the thermal energy
may be studied up to wpt =~ 40 for § = Vt/S , and longer for

§ = v /16 .

In practice, § cannot always be made as small as is desirable,
because the smaller § is to be, the more particles are necessary,
Also, it is often necessary to follow the bhehavior in nonlinear problems
for considerable periods of time, Making the beam spacing § small
enough for such a simulation may become prohibitively expensive, As is
shown in Section 3.4, periodic smoothing makes a long-time simulation

possible with a relatively small number of beams.

3.3.2 Recurrence Phenomenon

In a simulation using the quiet start tehcnique, a perturbation
with wavenumber k first damps to a low level at the Landau damping
ratesg, and then reappears suddenly at time t = 2n/k5 with higher
amblitude than its initial one. After its reappearance, the perturbation
decays with a damping rate slightly different from the Landau damping
rate. This is clearly demonstrated by Fig. 3.3, which was obtained from
a result of our simulation. This recurrence results from approximating
the continuous distribution function by a finite number of delta-

function beams: the perturbation with wavenumber k on each beam
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comes bhack into phase after a time TR = zﬂ/ka , and with larger‘ampli—
tude than its initial value due to the streaming instability. This
phenomenon was also observed by Denavit.6 In the limit of infinitely
many beams, phase-mixing prevents recurrence of the initial state,

Similar recurrence phenomena have been observed in the numerical

4
solution of the Vlasov eguation by the Fourier-Hermite method, 0 the
. ) 40 . C 41
finite difference method, and the Lewis variational method.
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FIG. 3.3, Recurrence of initial state, Wavenumber and
recurrence time are given by kxD = 3m/16 , and
mpTRm75. [5=vt/7 , N = 2048, L = 32 Ax, H=Qx=j\D,
6 = AV, v, = -4.5vt, vy = 4.5 Vi mpAt = 0,257 .
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The recurrence phenomenon has not been found to pose any problems
in our simulations to be described in Sections 4-6, For example, it is
observed that a growing perturbation does not show any irregularity at
t =T . Another example is that of a large amplitude wave, which
involves particle trapping; as is seen in Section 4, the behavior of
the wave demonstrates no irregularity at the recurrence time, TR - We
may conclude that in strongly nonlinear cases, or in unsiable situations,

the recurrence phenomencon is not significant. It should be noted that

periodic smoothing alone would not suffice to prevent the recurrence,

3.4 Diffusion in Phase-Space

Since the weighting functions mentioned in Section 3.2.2, and
derived in the Appendix, do not conserve all of the moments of the velo-
city distribution function when the smoothing expressed by Eq. (3.1)
is performed, a diffusion of the distribution function occurs in phase-
space due to reconstruction, In this section, the diffusion rate is

. . ., 6
estimated following Denavit,

Before smoothing, the microscopic distribution function is given

by

£(v) =E £8(v - v)) ' (3.12)
J

where fj represents the mass of particle j , with velocity vj , and
£(v) 1is the Dirac delta-function. The smoothed distribution function

is

o 1
) = Z Wy - V), (3.13)
J
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where w(v) 1is the welghting function, and Av is the velocity grid
size.

Introducing the Fourier transforms of f{v) and E(v) ,

H(q) =f f{v) exp(igv)dv = Efj exp(iqvj) ,

- J
[+-]
H{g) = f f(v) exp(igv)dv = W(q) E fj exp(iqvj) ,
—m J (3.14)

where W(q) denotes the Fourier transform of the weighting function

w(v}/Av , we obtain

ﬁ(q) = W{q)H(q) . (3.15)

A plot of W(q) is shown in Fig. 3.4 for the weighting functions given
in the Appendix. Since q represents frequency of velocity-space
cscillation, Eq. (3.15) implies that the fine structure of the distri-
bution function in velocity-space is smoothed out by reconstruction,

To estimate the diffusion rate, we define
D(a) = 1 - W(a) . (3.16)
Then, after m reconstructions, we have
H (@) = [1-d@]" H(a) . (3.17)

Since D(g) << 1 , for qAv/m >> 1 , Eq. (3.17) may be approximated in

this region by
ﬁm(q) =~ exp[-mD(q)] H{q) . . (3.18)

Thus, D(q) represents the diffusion rate of a feature of scale 2w/q .
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In order to suppress the sireaming instability, features of scale-
length g == n/Av have to be smoothed out. Consider a perturbation
with wavenumber k . The growth rate of this perturbation due to the

streaming instability is obtained from Eq, (3.11) as

v
B = KAV 150 £ (3.19)
27 AV

when Av  is small, where § = Av has been assumed, Assuming that the
instability is suppressed by balancing this growth with the attenuatiorn
due to diffusion, we can obtain the freguency with which reconstructior

is necessary. Thus, from

kmﬁv v -
exp (‘ﬁ - in [_l; W(q) ;E 1 (q Q‘K‘;) ’ (3.20)
we have,
20 In{l/w)
t<T = , (3.2
~ s T K AV [ln(vt/hv)]

where Te is the time interval within which at least one reconstruction
is necessary.
t i i — = == i i
Substituting k_ /A% n/AD , vt/Av 7 , which will be used
in most of our simulations in subsequent sections, and q == ﬁ/AV ,
W(g) == 0.4 (obtained from Fig. 3.4 for the quadratic weighting function),

into Eg. (3.20), yields

wp‘rsﬁ"? . (3.22)

50 far, we have only discussed diffusion in velocity-space,

Diffusion in coordinate-sapce is treated in the same way. Replacing
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v and gq , by x and k , in Egs. (3.16)-(3.18), indicates that there

is attenuation of short wavelength perturbations at a rate given by
H (k) = exp[-mD (k)] H(k) , (3.23)
afiter m reconstructions,

3.5 Some Tests of the Hybrid Model

To test the hybrid model, Denavit chose two-stream instability,
and obtained good agreement with results from the particle code11’20’42
and the Vlasov approach.l1 However, his simulations were carried out
at relatively high electrostatic energy levels, i.e. 1073 - 1072 times
the total energy, which is to be compared with an order of 10—6 in our
tests to be described in Section 3.5,2.

We shall now present some results of test runs with our model,
first on the equilibrium behavior of a Maxwellian plasma, and then on

linear wave propagation when the system is perturbed. The results will

be compared with theoretical predictions,

3.5.1 Equilibrium Behavior

Oour first numerical experimenis were carried out on a
Maxwellian plasma with no applied perturbation or external excitation.
The most important paramefers are the number of time-steps, NS , after
which the smoothing operation is repeated, and the beam spacing, &
in Fig. 3.5, the total field energy is plotted against time for
5 = Vt/7 . It will be seen that by increasing the freguency of
smoothing, i.e, decreasing Ns , the streaming instability is suppressed;

for NS < 32 , the field energy stays roughly constanti throughout the

simulation run, To study this further, the initial energy spectru,
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and the time averaged energy spectrum are shown in Fig. 3.6. The

energy spectrum for NS = 32 shows that mode energy tends to increase

as time increases. For NS = 16 and 8, the mode energy seems to stay

at roughly the same level, i.e.,, the streaming instability is stabilized.
This observation agrees with the rough estimate given by Eq. (3.22).

The total energy of the system, i.e., the particle kinetic energy plus
the field energy, was found to be conserved to within 0,1% up to

wpt = 270,

In Figs, 3.7 and 3.8 are plotted analcogous results to Figs, 3.5
and 3.6 for § = vt/l4. As expected, the growth rate of the field
energy is greatly reduced coﬁpared with the case, 8§ = Vt/7
Figure 3.8 seems to indicate that values of NS between 16 and 32 are
adequate to suppress the streaming instability.

The important fact here is that for stable cases the total field
energy is fluctuating at a level 10_8 times lower than the thermal
energy of the plasma during the whole run, Since the level of fluctu-
ations in the particle model for a system of length SZAD with 4096
particles is of the order of 10-3 - 10'_2 times the thermal energy, we

have achieved 50 - 60 dB reduction in fluctuations,

3.5.2 Linear Wave Propagation

The purpose of this simulation was to verify predictions of
i 39 .
Landau damping for electron plasma waves. Waves were excited at t =0

by applying the perturbations

Axi = eAD cos kx:_L , Avi = ev, sin kxi , (3.23)

where X, ,&xi ., and avi are the position, displacement, and velocity
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perturbation of particle i , ¢ is the amplitude, and k[= 2m/L] is

the wavenumber. In this simulation, only Mode 2 (n =2, 1.e. there

are two wavelengths in the system) was excited. The results are shown
in Fig. 3.9. For Ns < 16, there is excellent agreement with the
theoretical prediction by Langdon,31 shown by solid lines, which takes
into account finite-size particle effects and spatial grid effects.

Although the fluctuation amplitude in Fig. 3.9 lncreaSes with time,
it is important to note that the ratio of electrostatic energy to
thermal energy, [(eE/mewp)z/vi] ,at t =0 is 4.253 X 10'6 in this
simulation. Particle simulation with such good quality, at such a low
electrostatic energy level, has not been feasible with previous models.
For example, in order to reduce the fluctuation level to 10‘6 times the
thermal energy in a particle simulation with the same system length,
it would require 103 - 104 times more particles than are used in this
simulation. Since the computing cost increases roughly in proportion
to the number of particles, it would be prohibitively expensive. In
contrast, the computing cost in this simulation was found to be less
than twice that with the corresponding CIC model. Suppose the smoothing
operation is performed every 16 time-steps. One smoothing operation in
our computer code takes about 7 sec on an IBM 360/67 for 8192 particles,
It is equivalent to an increase of about 0.44 sec per time-step. Since
it takes our computer code about 0.75 sec per time-step for the CIC
model with 8192 particles and a system with 128 cells, the total com-
puting time per time-step is about 1.2 sec,

In addition to our check on temporal Landau damping of a signal,

we have verified the predicted linear dispersion characteristics of
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electron plasma waves. The results are shown in Fig, 3.10, and agree
well with theory, The initial perturbations were applied for Modes 7-20
with random phases. The electrostatic energy of the individual modes
excited was about 4 x 10“6 times the thermal energy at t = 0 .

The simulation results presented in this section serve to demon-
strate that the hybrid approach provides guantitatively accurate results
on the collective behavior of plasma in the linear régime. Since there
is no reason why it should not be equally effective in the nonlinear
régime, for which analytical results are not so readily available, the
hybrid approach is clearly a powerful tool for plasma simulation. 1In
succeeding sections, we shall employ it in the study of a number of

nonlinear problems,
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4. NONLINEAR BEHAVIOR OF MONOCHROMATIC PLASMA WAVES

4,1 Introduction

In Section 3,5.2, we have studied numerically the collisionless
damping tc which small amplitude longitudinal electron plasmas waves are
subject. This phenomenon is due to wave-particle interaction: charged
particles moving faster than the wave transfer energy to it, while those
moving slower absorb wave energy., In a Maxwellian plasma, where there
are less fast particles than slow ones in the neighborhood of the wave
phase velocity, a net absorption of energy by the particles cccurs.
Although first studied by Landau in 1946,39 the predicted damping was
not verified in laboratory experiments until about ten years ago.

. . . 43-46
Spatial damping was then observed both for electron waves, and
. 47 o .
ion waves, It was also verified that the measurements of wave disper-
sion agree with theoretical predictions.

Since plasma is a highly nonlinear medium, the linearized analysis
gives only a limited description of its behavior, The question arises
of what will happen to Landau damping and wave dispersion when the wave
amplitude is increased. Theroetical studies of this gquestion were first

., 48 49
made by O'Neil, and Al'tshul and Karpman, These authors found that
the amplitude changes in time in an oscillatory manner, rather than being
continuously attenuated, The amplitude oscillation is due to periodic
exchange of energy between the wave and electrons trapped in the potential
wells of the wave. The exchange occurs on a time scale of l/wB , where
1/2. . ) .

wB[= (ekEo/me) ] is the bounce frequency of an electron oscillating at

the bottom of a potential well, k is the wavenumber, and EO is the

wave electric field amplitude,
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The foregoing theories establish that Landau damping is valid only
for short times, before particle trapping comes into play. The smaller
the initial amplitude, the longer is the time for which the Landau
solution applies. Because of analytical difficulties in dealing with
bhenomena involving particle trapping, the theoretical studies have been
limited to special cases., For example, O'Neil assumed that the ampli-
tude variation is so small that it may be neglected in calculating the
particle orbits.48 His theory is consequently valid only for

yL/wB << 1 , where is the Landau damping rate, The same restriction

L
applies to the theory of Al'tshul and Karpman.49 Bailey and Denavit
have taken into account the effects of the slowly-varying amplitude,
and obtained essentially the same amplitude oscillation, except that
the time at which the amplitude begins to grow again after the initial
damping is delayed.50 However, they still assume yL/wB << 1 ., Gary
has treated the case yL/wB > 1 analytically, and shown that the wave.
starts to decay at a rate smaller than the Landau damping rate at a
time when the linear theory is expected to break down.51

The restriction on TL/mB was removed in work by Sugihara and
Kamimura, who investigated the behavior of Landau damping for a wide
range of 7L/wB values.52 Recent work by Oei and Swanson has also
taken into account the time-varying pProperty of the bounce frequency.53
They have obtained solutions for 0 < 7L/wB-S 1 which are similar to
those of Sugihara and Kamimura. An important feature of the contribu-
tions by Sugihara and Kamimura,and Oei and Swanson, is that their theory

is self-consistent: it includes the interaction of the electric field

and the averaged particle velocity distribution. None of the other
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theories mentioned so far is self-consistent. For example, O'Neil
calculated the effect of the electric field on the particles, but not

vice versa,

All of the theoretical studies discussed so far assume that the
electric field is so small that the distribution function in the
resonant region can be expressed by a Taylor expansion about the wave
phase velocity up to the first order term in velocity, This condition
may be written as m/mB = (vp/vt)2 , where v, is the phase velocity
of the wave (w,k} . This is such a stringent condition that it is not
easy to meet in laboratory experimenis, especially when also satisfying
the condition 7L/wB << 1

A few experimental data on Landau damping of large amplitude waves
have been reported. Malmberg and Wharton54 ohserved spatial amplitude
oscillation in gqualitative agreement with the O'Neil theory48 modified
to fit the spatial case by Lee and Schmidt.55 Oei and Swanson compared
their theoretical results with the experiments of Malmberg and Wharton,
and found agreement on the amplitude oscillation lengths but not on the
detailed behavior of the amplitude.53 One of the reasons may be that
their experimental parameters do not meet the condition
w/mB >> (vp/vt)z . Specifically, they have yL/mB ~ 0.1 and
w/wB a-(vp/vt)z for the results which exhibit amplitude oscillation,
Franklin et El' have made detailed measurements of the spatial dependence
of amplitude for electron plasma waves with different initial amplitudes,

i,e,, for different values of y

B However, for large initial ampli-

tude, they failed to obtain results in agreement with the theory. This

was ascribed to the appearance of sideband growth due to trapped particle
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instability.57 Their experimental parameters for the measured results
corresponding to 7L/mB < 0.45 yield w/mB 5'4(Vp/vt)2 . This suggests
that comparison of the available theories with the experiments is
inappropriate,

In view of the foregoing difficulties, computer simulation Buggests
itself as a means of bridging the gap between the theoretical assumptions
and readily attainable experimental parameters, It allows conditions to
be studied for which analytical approaches are not tractable. Such
simulations have been carried cut by Knorr,1 using the Fourier-Fourier
method (see Section 2.2,2), by Armstrong,3 using the Fourier-Hermite
method (see Section 2.2.2), and by Dawson and Shanny,58 using the particle
Simulation model, Knorr observed a decrease in the damping rate for
large amplitude waves at times such that wBt ~ 1 . Armstrong considered
the same problem and found in addition to Knorr's results that large
amplitude waves grow again after damping initially, He also found that
the initial damping of a large amplitude wave is stronger than is
bredicted by the Landau theory. A similar observation of the enhanced
initial damping was made by Dawson and Shanny, It is not certain,
however, to what extent the large fluctuations inherent in particle
simulation models influenced the behavior of the wave:  in their com-
putation, the field energy of the wave is of a comparable order of
magnitude to that of the total fluctuation energy,

One of our purposes has been to use the hybrid model described in
Section 3 to investigate the nonlinear behavior of longitudinal mono-
chromatic plasma waves more comprehensively than has been possible

previously. The hybrid approach is very well suited to this study
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because it does not generate troublesome fluctuation, and is free from
numerical instabilities of the type encountered in the Vlasov approach
(see Section 2,2), In Section 4.2, we shall consider amplitude oscil-
lation and Landau damping.

Another of our aims has been to investigate the nonlinear frequency
shift of electron plasma waves. In a plasma of infinite extent, or of
finite length with periodic boundary conditions, the frequency of a
wave of large amplitude deviates from that of & small amplitude wave
due to nonlinear effects. 1In an experimental plasma, in which a wave
is excited at a fixed frequency, the shift should occur in wavelength
instead of frequency.

The frequency shift has been studied analytically by Manheimer
and Flynn,59 Morales and O'Neil,60 Dewar,61 and Lee and P0cobelli,62
and found to be proporticmal to Eé/z . So far, there has heen no
report of laboratory observations of nonlinear wavelength shift for
comparison with these theories, In Section 4.3, we shall test the

theoretical predictions of nonlinear frequency shift against computer

simulations carried out by use of the hybrid model.

4.2 Amplitude Oscillation and Landau Damping

4.2,1 Computations

We have performed a series of computer simulations to demon-~
strate the nonlinear behavior of monochromatic electron plasma waves in
a collisionless plasma. The electrostatic energy of the waves in these
simulations was of the order of 10-4 times the thermal energy. This

is about two orders of magnitude smaller than in the simulations of
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Dawson and Shanny.58 Some of the simulations by Knorr,1 and Armstrong,3
are in our range of energy. The computations have not, however, been
carried out for long enough times to demonstrate amplitude oscillation,

In Fig, 4,1, we demonstrate the amplitude oscillation phenomenon
for a large amplitude wave predicted by O'Neil.48 In this simulation,
8192 particles were followed in a system 64 hD long, divided into 64
cells. The continuous Maxwellian velocity distribution was replaced
by 128 beams vt/l4 apart. Velocity-space was covered from
-4.25 vt - 4,82 Vt by a grid with mesh size equal to the beam spacing,
Periodic smoothing was carried out after every 16 time-steps, a time-
step being o.25/wp . Mode 3 was excited initially according to
Eq. (3.23), and the evolution of the amplitude was followed in time,
with periodic boundary conditions applied in space, It is clear from
Fig, 4.1 that the amplitude oscillates, as predicted.

The initial amplitude of the wave was eEo/mevtwp =~ 3.4 y 1072 ,
corresponding to a bounce frequency of wB/wp == (.09, The measured
initial damping rate is yL/mp = 0.0119. These combine to give
7L/wB = {0,13. The measured frequency is w/wp >~ 1.15. The corresponding
wave phase velocity is vp/vt =~ 3,91, so that w/wB =~ 13 and
(vp/vt)2 = 15 are of the same order,

Figure 4.2 shows the temporal behavior of the distribution function,
in the vicinity of the wave phase velocity, averaged over space. The
changes in the distribution are relatively small; for example, at
wpt = 48, the ratio of the peak value to the maximum value of the (nearly)
Maxwellian distribution is of the order of 10“3. A bump is formed in

the distribution for mpt = 48, and reappears for wpt== 144 and 240,
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Comparison with Fig, 4.1 indicates that these times correspond approxi-
mately to minima in the amplitude, The height of the bump becomes
progressively Smaller on its reappearances, because of phase-mixing of
the trapped particles.48 A similar bump was observed by Armstrong,
and considered to cause growth of waves with phase velocities lying in
that region of the bump that has positive slopE.3

The bump on the tail of the distribution function has spatial
structure. This is shown in Fig. 4.3, and may be contrasted with the
initially spatially homogeneous distribution whose evolution is con-
sidered in the quasilinear theory of a warm beam-plasma system.63’64
The figure shows that the particles rotate by a half-cycle in phase-
space from wpt = 48 to 96, and another half-cycle from wpt = 96 to 144,
The cycle is repeated for wpt = 144 to 240. It is clear that the
phasg-space structure becomes progressively less distinet as time
increases.

In Fig., 4.4, we present the results of a series of simulations for

various values of the initial electric field, E expressed in terms of

O ?

. 1/2
the convenient parameter 7L/wB , where we recall that y_ = (ekEO/me) /

B
Only one mode was excited at t = 0 for each simulation run, and a
different mode and amplitude were used in each run, The amplitude was
normalized te unity at t = 0 in the plots. It will be seen from
Fig. 4.4 that amplitude oscillation occurs for small values of 7L/wB \
and that the oscillation becomes less pronounced, with Landau damping
extended for a longer period, as 7L/wB increases, The fluctuations

in the curves for large values of yL/wB are due to the round-off

errors made in representing numbers by a finite number of digits in
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the computer, The mode numbers and other parameters used in this

series of simulations are tabulated in Table 4.1,

TABLE 4.1. Parameters in the series of
simulations presented in Fig. 4.4.

Mode n L/RD MB/wp TL/wB (w/wB)/(vp/vt)z
a 6 128 0.092 0.13 0.9
b 7 128 0.097 0.34 1.0
c 7 128 0.061 0.55 1.5
d 2 32 0.093 0,71 1.3
e 2 32 0.079 0.83 1.4
£ 1 15 0.092  0.93 1.4

4,.2.2 Comparison with Theory

There are a number of theories available with which we can
make comparisons: the linear theory of Langdon,31 the amplitude oscil-
. iar s A8 ) .. 90 :
lation theory of Q'Neil, and Bailey and Denavit, and the nonlinear
. , 52
theory of Sugihara and Kamimura,

Langdon; The theoretical values of the damping rate, and

71‘ ?
frequency, w o are calculated from Eg. (2,66), which includes finite-
size particle and spatial grid effects. Retaining only the &£ =0
term in the summation, we obtain VL/wp = 0.0118 , and wL/mp = 1.145
for Mode 3 plotted in Fig, 4.1. We see very good agreement with the
measurements described in Section 4.,2.1, The theoretical predictions

for each mode presented in Fig. 4.4 have also been found to agree with

the measured initial damping and frequency with errors of less than 1%.
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O'Neil: We may compare the theoretical predictions of O'Neil with
the simulation results shown in Fig. 4.1, By solving the Vliasov equation

for a large amplitude wave, O'Neil obtained the time-dependent damping

rate,48
1
o 2 nmrt

207 51n[——*——]

64 kF(r)T

‘7(1:) =Y e dg Y

Lg;% n KSF(K)2(1+Q2n)(l+Q 2o,
0
2 . 1 (2nal)imt
2o+l & 51n[———————J
. ZF(Kr)T ’ (4.1)

2 2n+1 -2n-1
F(x)™(1+Q )(1+Q )
where F(k) [:F(K,ﬂ/z)] is the complete elliptic integral of the first
. 2.1/2
kind, Q = exp j-nF_(1-x" )"/ “]/F(k); , and 7 = 1/wB . It can be shown
that y(t) , given by Eq. (4.1), reduces to the Landau damping rate in
the limit t/T << 1 . In the time-asymptotic limit, y{(t) vanishes due
65
to phase-mixing, and a Bernstein-Green-Kruskal (BGK) mode is formed.
In contrast, the solution of Al'tshul and Karpman, obtained by using the
guasilinear approximation, does not demonstrate the phase-mixing but
4
predicts that the amplitude continues to oscillate, o 0O*'Neil has indi-
cated, however, that it is not certain whether their solution is correct
4
to order oy T 8
L
We have computed Eq. (4.1), including terms up to n = 3 ., We have
substituted the numerical value 7L/wp = 0.0119 obtained from our com-
puter simulation (Fig. 4.1). For the bounce frequency, we have used

Wg wp = 0.09, calculated from the initial amplitude in the same simu-

lation (Fig. 4.1)., The amplitude variation thus obtained is plotted
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in Fig, 4.1, After damping initially, the wave starts to grow somewhat
earlier than it does in the simulation, This can be ascribed to the
change in wave amplitude, which was not taken into account by O'Neil,

Bailey and Denavit: These authors incorporated the effects of

slowly-varying wave amplitude to lowest order in dyaz , Where

al(t) = [ekE(t)/mejl/z Wy = a(0) , and & = dg/dt , and obtained the

following set of equations describing the time evolution of the ampli-

tude,50
72
doy 1 1 _.T uT L
== 64y w, I= I, + I ) -
dt 1 yLwB T LB (2 R R ZanB
t - 2g t (0 - 81 ,
X [cos ZWB Wy (2 1(2wBt))]
u
. (4.2)
5i(u) =f 5i08 4o |
ey
0

uT
where the guantities I: and IR are given by

w ! n-1/2 ¢
R 2n-1 2n-1 2 Fle(t") !
1 0 FOT) (47T - SR
(4.3)
1 t

hnd n
{QQ )
= f — oo | SR
1o - sin | oo o o
R 4 )
koK F(H)F(HO)(1+Q2n)(1+Q§n) k(EDIF k(™)

n=1 ¢ Y]
(4.4)

87



The values of k, and k(t’) for given values of gk and t in

Eq. (4.3) are obtained from
oLE(k) - (l-nz)F(n)] = const , (4.5)

while those in Eg. (4.4) are obtained from

= const

) , (4.8)

where E(k)[ = E(x,n/2)] is the complete elliptic integral of the

second kind, We have solved Egs. (4.2)-(4.6) numerically, for the same
values of "L and Wy used above, and with the results plotted in

Fig. 4.1. There is very good agreement between the theory and the
simulation, We note, however, that there is a slight difference in
amplitude, and that the phase-mixing is somewhat slower in the simulaticon
results than the theory predicts. These differences are probably due,
first, to the fact that the condition, m/wB > (vp/vt)2 , is not satis-
fied in the simulation, and second, that the theory of Bailey and

Denavit is not self-consistent.

Sugihara and Kamimura: These authors derived from the Vlasov

equation a set of integr05differentia1 equations which describe the
behavior of the amplitude of a monochromatic wave, Numerical solutions
of these integro-differential equations demonstrated amplitude oscilla-
tion for 7L/wB << 1 , and Landau damping for 7L/wB S 1

We may make a comparison between our simulation results and the
theoretical results of Sugihara and Kamimura., First, the behavior of
the distribution function obtained in the simulation (Fig, 4.3) may be

compared qualitatively with that from the theory, Sugihara and Kamimura
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presented phase-space plots for = 0,1 at three different times,

'/¥s

corresponding to the first point of minimum amplitude, the first maximum,

and to & point where the amplitude nearly ceases to oscillate (see

Figs. 5~7 of Ref, 52), In our simulation, these times correspond to

wpt =~ 48 96, and 240. We find that their results and ours are consis-

tent in the amount of rotation in phase-space, and the distinctive

pattern, However, in our simulation, the wave amplitude still shows

oscillatory behavior for wpt ~ 240, in contrast to the solution of

Sugihara and Kamimura, For w_t > 240, our results show continuiag

particle rotation in phase-space, and a tendency to develop a circular

plateau (see Fig, 4.3, mpt = 312), This is consistent with the O0'Neil

solution in the time-asymptotiec limit, i.e,, formation of a BGK mode.
Next, we may compare the simulation results given in Fig., 4.4

with those of Sugihara and Kamimurz. Some of their results are reproduced

in that figure. First, we note that their calculation shows that, for

yL/wB = 0,1, the amplitude approaches a constant vajlue after neariy two

periods of oscillation, although the distribution function still retains

nonuniform features, In our simulation, however, the amplitude oscilla-

tion lasts more than two periods, and does not seem to die out so

gquickly., This fact seems to be in at least qualitative agreement with

a nonlinear spatial Landau damping experiment by Malmberg and Wharton54

in which there was no clear sign of phase-mixing, A similar feature of

this persistent amplitude oscillation was also observed in the behavior

of an externally excited large amplitude wave in a simulation of side-

band instability by Denavit and Kruer.ll Second, we recall that

Sugihara and Kamimura found that there is a c¢ritical value of
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7L/wB = 0,77 , which separates waves into those with oscillatorj behavior
(7L/wB < 0.77), and those which are continuously damped (7L/wB > 0.77).
Figure 4.4 indicates that there is no such critical value below

7L/mB = 0.93. Third, we note that there is a teﬁdency in our simulation
results for the amplitude to decrease to a lower level, for a given

value of 7L than is predicted by the theory of Sugihara and

Eamimura; the first maximum is also lower than the theory predicts,
Although the simulation results given in Fig. 4.4 are similar to the
theoretical results obtained by Sugihara and Kamimura, it is important

to note that in our simulations m/mB Zl(vp/vt)z , whereas they implicitly

2
assumed that m/mB > (vp/vt)

4.3 Nonlinear Frequency Shift

4.3.1 Computations

In Fig, 4.5, we show the variation of the nonlinear frequency
shift of electron plasma waves as a function of the electric field
amplitude. In this simulation, 4096 particles ﬁere followed in a systen
50 kD long, divided into 64 cells, The continuous Maxwellian velocity
distribution was replaced by 64 beams spaced Vt/7 apart, Velocity-
space was covered from -3.79 Ve T 5.21 vJc by a grid with mesh size
equal to the beam spacing. Periodic smoothing was car?ied out every
16 time-steps, a time-step being 0.25/mp . Periodic boundary conditions
were applied in space.

Mode 3 was excited initially according to Eq. (3.23), with amplitude
(eEO/mev€up) varying from small values (9 % 10_3), which exhibit Landau
damping, to large values (3 X 10“1) such as were studied in the simula-
tions of Dawson and Shanny.58 For each simulation with different
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amplitude, the frequency of Mode 3 was measured by computing the total
amount of phase change in the Fourier transform of the electriec field

between mpt = 6 and 60, The frequency shift piotted in Fig. 4.5 was

1

then obtained by subtracting the linear frequency, w = 1,247 W,
obtained from Eq, (2.66), from the measured frequency, Except for very

small amplitudes, the nonlinear frequency shift is propoftional to

Eé/z , and given by

W

= 0.006 - 0.2 — 4.7
‘wp

-

To check the dependence of this result on the beam spacing, the simula-
tions were repeated with the beam spacing halved, and the same number of
smoothing operations. The differences in frequency shift were not

more than 3%.

A significant fact to note here is the high degree of accuracy
with which it was possible to determine the frequency, and frequency
shift, The model based on the hybrid approach is, therefore, much more
efficient than a particle code in terms of computing cost for this

measurement .

4.3.2 Comparison with Theory

Manheimer and Flynn59 examined the self-consistency of the

. ] . - 48 .

O'Neil solution for the time-asymptotic state : they studied whether
the potential created by the O0'Neil solution satisfies the Poisson

equation, They found that it is approximately self-consistent if a

frequency shift given by
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eE \ 1/2 fw 3t 3 \-1
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w:-a(ﬁ) (j)(avz)- (a‘”) ’ 9
v_vp u:ui

is included, where B is a humerical factor equal to 21/2 , fo is the
initial distribution function, and Ep is the linear placsma bermittivity.
In deriving Eq. (4.8), Manheimer and Filynn only considered the trapped
barticles with simple harmonic motions, i,e,, those near the potential
wells of the wave, and the untrapped particles with straight line orbits,
Morales and O'Neill solved an initial value problem to find the Lime-
dependent shift in the complex frequency of the wave.so They took into
account the exact trajectories for both the trapped and untrapped
particles, and obtained a frequency shift which varies in an oscillatory
manner and approaches a constant value in the time-asymptotic limit,
Their time-asymptotic frequency shift is expressed in the same form as

Eq. (4.8) except that B is given by

1 .

2 2 2
p=28f glsl2EC) - P T | [2(BGo)-Fe))er0 ) 1 63
™ F(H-) KGF(I‘C)

0 (4.9)

This result is more accurate than that of Manheimer and Flynn, who
treated particile trajectories in the approximation mentioned above.
Lee and Pocobelli predicted frequency shifts for waves with

vp/vt Z 4 up to about 50% larger than those predicted by Morales and
O'Neil. These were obtained by including effects of electrons not in
the vicinity of the phase velocity of the wave.62 In contrast to these
theories treating the case in which the wave is switched on suddenly

al t = 0, Dewar considered the case of an adiabatically excited wave,

93



i.e,, the wave was turned on gradually.61 He obtained a time-asymptotic
frequency shift similar to that expressed by Eq. (4.8), but with
B = 1.09,

Substituting ”*’L/‘”p = 1,247 for Mode 3, obtained from Eq. (2.66),

and the Maxwellian distribution for fO in Eq. (4.8), we have

—0.19mB (Morales and O'Neil),
S = (4.10)
—0.13wB (Dewar) ,

which are plotted in Fig. 4.5. We see that the slopes of the lines
from the simulation, and from the theory of Morales and 0'Neil, are very
similar. This is to be expected because our simulation of an initial
value problem resembles the Morales and D;Neil problem, rather than

the Dewar problem, It should be remembered, however, that the theoreti-
cal result is the time-asymptotic value, whereas the measured frequency
shift is an average over the period wpt = 6 to 60. It should also be

recalled that the value of W corresponds to the initial amplitude

B
of the wave. Since the theoretical result due to Morales and O'Neil
was obtained under the condition that the amplitude variation is very
small, it does not matter much whether the bounce freguency is computed
from the initial amplitude or from the time—asymptotic'amplitude. In
our simulation, however, the amplitude.variation is not negligible; if
the bounce frequency were computed from the time-asymptotic amplitudes,

the points in Fig, 4.5 would be moved towards the theoretical line of

Morales and O'Neil.
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4.4 Summary

The nonlinear behavior of monochromatic plasma waves has been
studied over a wide range of wave amplitudes, by uze of the low~noise
model based on the hybrid approach,

In the study of amplitude oscillation and Landau damping in
Section 4,2, we have attempted investigation in areas where analytical
approaches are not easily tractable, i.e,, in cases where the condition,
w/wB > (vp/vt)2, is not satisfied. The results of our simulations show
good qualitative agreement with the theories of Bailey and Denavit,
and Sugihara and Kamimura, who have made the assumption, w/mB > (vp/vt)z.
However, there are significant differences between our simulation results
and the theoretical results of these authors; first, phase-mixing of the
amplitude oscillation is slower than predicted, and second, there exists
no critical value of 7L/wB within our parameter range such as was
found by Sugihara and Kamimura, These results will be helpful in better
understanding the phenomenon, and in developing an analytical theory in
cases where m/wB ::(vp/vt)2 .

In the study of nonlinear frequency shift, in Section 4.3, we have
measured the frequency shift for finite amplitude waves, and compared the
results with theoretical predictions., It has heen demonstrated that the
simulation results agree wéll with the theoretical predictions of Morales

and O'Neil,.
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5, SIDEBAND INSTABILITY

5.1 Introduction

In 1968, Wharton et ml, reported results of experiments on large
amplitude, longitudinal electron plasma waves, in which not only was
spatial amplitude oscillation of the type discussed in Section 4
observed, but alsc spatial growth of sidebands separated from the
frequency of the large amplitude wave by the bounce frequency of trapped
electrons, wB .66 These experiments have stimulated & number of
theoretical studies that may be classified into twoe types of approaches,
One is based on a wave-wave interaction mechanism between the large
amplitude wave and sideband waves (Kruer EE.EE°;57 Goldman;67 Goldman

70,7
and Berk;68 Wcmg;69 and Mima and Nishikawa 0,71

). The other is a quasi~
linear approach based on wave-particle interaction (Shapiro and
Shevchenko;72 Bud 'ko et El';73 Manheimer;74 Yagishita and Ichikawa;75
and Brinca76).

Other laboratory experiments on sideband instability have been

78
carried out by Franklin et al and Jahns and Van Hoven for electron

"

79
plasma waves, and by Ikezi et al.

for ion waves, These experimental
results have verified some of the predictions of wave-wave interaction

?

7 .
theory applied to a spatial case, However, there are some obser-

vations which suggest the quasilinear mechanism as an alternative cause
of the instability.78
Computer simulations of the sideband instability have been performed
80 . 11 81
by Kruer and Dawson, Denavit and Kruer, and Rosen et al. Kruer

and Dawson studied the instability in a one-dimensional plasma driven

by an external electric field of a given frequency by use of a particle
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simulation model. They observed the growth of sidebands having a
frequency separation consistent with the experimental results of
Wharton et al, It was demonstrated later by Rosen et al. that artificial
removal of trapped particles eliminates the sideband growth, Denavit
and Kruer carried out simulations of a similar problem to make compari-
son between the particle simulation and the Vlasov approach, and found
close agreement between the results of the two approaches, In these
simulations, electrostatic energy of the large amplitude wave was
0.1-1.0 times the initial thermal energy of the plasma, The high wave
energy is required in the particle code since such simulations are much
noisier than real plasmas, as discussed in Section 2.

In laboratory experiments, however, electrostatic energy of the

4 10—3) than the

large amplitude wave is typically much smaller (10
thermal energy. Also, in most of the analytical approaches mentioned
above, it is assumed that the wave energy is much smaller than the
thermal energy. In what follows we shall investigate the sideband
instability, using the simulation model based on the hybrid approach,

in the parameter range which allows us both to make more guantitative
comparisons with existing theories, and to model more satisfactorily

the conditions appropriate to laboratory experiments. The quantitatively

accurate results obtainable by use of this model should lead to better

understanding of the phenomena involved, and refinement of the theory.

5.2 Computations

In the series of simulations to be described in this section, we
have considered an initial value problem, and imposed perturbations at
time t = 0 according to Eq. (3.23). Mode 13 was chosen for the large
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amplitude wave, which we will refer to from now on as the ‘'main' wave,
Five simulation runs (A - E) were made with the initial main wave

w é 0.5. In terms of electro-

amplitude in the range 0.06 S-GEO/mevt P

static energy, this is between 1.8 X 1072 and 1.2 x 107} times the
thermal energy. Waves were also excited initially as éidebands of
Mode 13 according to Eq. (3.23), but with random phases at the energy
level of 10'_6 times the thermal energy.

In all of the computations, 16384 particles were followed in a
system 256 ?\D long, divided into 256 cells, The continuous Maxwellian
veleocity distribution was replaced by 64 beams spaced vt/T apart.
Velocity-space was covered from -3.79 v, - 5.21 vy by a grid with mesh
size equal.to the beam spacing., Periodic smoothing was carried out
every 16 time-steps, a time-step being 0.25/wp . Periodic boundary
conditions were applied in space,

Results of a typical simulation are given in Fig. 5.1, It shows
the evolution of the main wave and two test waves, The initial ampli-
tude of the main wave was eEO/mevtwp =~ 0,12, corresponding to
wB/m =~ 0,19 , where wB[z (ek E_/m )1/2] is the bounce frequency of an

p 00 e
electron at the bottom of a potential well of the main wave with wave-
number kO . Mode 11 decays first, and then begins to grow, Mode 12
shows an evolutionary pattern similar to that of Mode 11 at early times,
and then begins to grow more slowly than Mode 11. The temporal behavior
of the velocity distribution function at the early times is shown in
Fig. 5.2. It is a2 plot of the spatially averaged distribution func-

tion in the vicinity of the phase velocity of the main wave. The
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distribution function at later times, when the sidebands are growing
steadily, is shown in Fig. 5.3 as a phase~space Plot., It is seen
clearly that there are particles trapped near the bottom of the wave
potential wells, We have confirmed that Phase-space structure similar
to that shown in Fig, 5,3 persisted throughout the simulation run. This
may be compared with Figs., 3 and 8 of Ref. 80, which show only a
negligible number of such particles to be present. 1In their simulation,
using a particle code, the number of particles with the velocities in
the vieinity of the phase velocity {(~ 4 vt) of the main wave is very
small, because the Maxwellian velocity distribution assumed falls off
as exp (—vz/zvi). Since it is these particles that will stay trapped
near the bottom of the potential wells, a situation such as observed

in Ref. 80 may occur,

In Fig. 5.4 are given the results of two simulations with a larger
amplitude of the main wave than the previous simulation, The growth of
Mode 11, in the lower sideband (k < ko) , 1s shown in Fig, 5.4(a) both
for growth from noise, and when it is excited as a test wave at t = O ,
Figure 5.4(b) shows growth of a test wave in Mode 15, in the upper side-
band (k > ko). Though not shown, we also observed growth from noise
of Mode 15, and other modes, in the simulation carried out without test
waves, The distribution function demonstrated similar behavior to that
shown in Figs. 5.2 and 5.3.

An energy épectrum obtained in one of the simulations is shown in
Fig, 5.5. It was measured at time wpt = 175, when the main wave
amplitude reaches nearly the fifth minimum in the temporal evolution.

The lower sideband is seen to be larger than the upper sideband. It

101



V/Vf

5

&
13320 00000 02676532321 00000 0367642]

W

0 000000000000 0 000000000000
hO000D00 00000000000000 00000001
OGO C ' C0000C000 00001
00000 00000 (
0012221000 011222100
01134444421100 00123444442100
DO00134444455542100000002344333554321000
W123431101236542110011234210802360642110¢
P 24320 . 135643212224310 13564221
§2332 000 - 146653434331 000 25566433]
k4320 O00CO0 03666534331 0000 (04669434

L3530 1100 036754333420 01100 1576533
b86420 011000256%533677530 012100136653364
h3075200122124543458CA863101222245543558(
FICN841M12333433460CEGLB63111233443347E8S
NKKGE96211222226BDINKNMHDS5211223235BEG04
ETROMHC T443335TCKOPOVVYSQLGBA%4335680 INSQY
FEEXEQIHBIBFACHK Q& VESEY XTNHGAL FICF IKSY X ¥
bt sYSSIKHMOT ke s s s 20k YUYRPK JKOO T # &% # %
IETE TR R RAVIE TSR T LR T R PR SAVES L L2 L 2

’ .
| 2

x/\

FI1G. 5.3. Phase-space plot at wpt = 96, in the
simulation shown in Fig. 5.1. The phase

velocity of the main wave is marked by an arrow.

102



RELATIVE MODE ENERGY

MODE I (TEST WAVE)

= { '
10 MODE !l (NOISE)

| MODE 13 (MAIN WAVE)
0™ \

TIME-ASYMPTOTIC LEVEL

L
0 20 40 60 80 100 120

FIG. 5.4(a). Temporal evolution of sideband instability:
(Initial main wave electrostatic energy/thermal

-2
energyy = 2,97 % 10 . Main and lower sideband waves,

103

140



RELATIVE MODE ENERGY

Top =

MODE 15 (TEST WAVE)

10~ 8-

10- -

l | | 1 | I

' MODE |3 (MAIN WAVE)

N
—

0 20 40 60 80 100 120

FIG. 5.4(b)., Temporal evolution of sideband instability:

(Initial main wave electrostatic energy/thermal

-2
energy) = 2,97 x 10 ., Main and upper sideband waves.

104

140



RELATIVE MODE ENERGY

I
0~
10”2
103}
| __J_ JNITIAL LEVEL Y o\ |
-4 | |
10 10 5 20
MODE, n

FIG, 5.5, Energy spectrum at mpt = 175 due to sideband
instability; (Initial main wave electrostatic energy/

t_hermal energy) = 2,97 x 10—2.

105



should be remembered, however, that the test waves initially decay and
then begin to grow. Consequently,.the fastest growing mode (Mode 10)
does not necessarily appear as the sideband peak, Some of the modes,
for example Mode 14, are still below their initial level at the time
when the energy spectrum is measured.
A case with a heavily-damped main wave is presented in Fig, 5.6.
In this simulation, Mode 17 was used as the main wave, The test wave
shown was the fastest growing mode. We see that the main wave first
decays, and then undergoes amplitude oscillation with slow damping, The
test wave shows continued growth after it has reached an energy level
comparable to, or exceeding, that of the main wave,
From the results shown, we note the following:
{a) The main wave amplitude shows oscillatory behavior,
corresponding to that predicted by O'Neil for the temporal case.
(b) Test waves exhibit initial decay which is stronger than the
corresponding linear Landau damping, and then show approximately
exponential growth.
(¢) Both sidebands grow from noise with growth rates corresponding
to those of the test waves,
(d) The lower sideband is higher in amplitude than the upper
sideband,
(e) There is some modulation superimposed on the growth of the
sidebands. This seems to be correlated with the amplitude oscilla-
tion of the main wave.
(f) In the case of a heavily-damped main wave, test waves exhibit

features similar to {a) through (e),
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The foregoing features are common to all of our simulations, and
suggest that it might be profitable to_divide theoretical description
into two parts: first, the transient processes occurring at the
earliest stages of evolution, and second, the development at later times

when the sidebands are growing steadily.

5.3 Comparison with Theory

In order to explain the sideband instability, Kruer et a1.57

considered a simple theoretical model in which the trapped electrons are
treated as a bunched beam of harmoniec oscillators of frequency Wy

and obtained a sideband growth rate consistent with the experimental
results of Wharton et 35.66 Goldman took a rather different approach.67
It is known that the time-asymptotic limit of the O'Neil solution48

is a large amplitude BGK mode.65 As long ago as 1962, Pfirsch had
speculated that a large class of BGK modes might be unstable, although
he did not pursue the question.82 Goldman examined the stability of the
BGK modes, and showed that the sideband growth is due to a parametric
type of coupling between waves enhanced by the trapped particles. He
obtained the results of Kruer et al. as a special case in which trapped
electrons are localized at the bottom of the pofential wells of a BGK
wave. Goldman and Berk obtained a dispersion relation, in the bunched
beam approximation, including the contribution of trapped electrons to
the frequency shift of the large amplitude wave.68 They showed that

the growth rate is enhanced above that of Kruer et al. Wong69 has
investigated the stability of two types of BGK modes, including the
effects of resonant interaction with both trapped and untrapped
electrons, and obtained results similar to those of Kruer et al. Mima
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and Nishikawa have developed a theory without assuming any particular
form of BGK mode, and predicted sideband instabilities over two wave-

number ranges given by ]k -k | = {2n + 1)1/2 mB/Vp or

0
k - kol < wB/vp , Where Vp is the phase velocity of the large
amplitude wave, and n(=0) is an integer.70 Mima and Nishikawa
later investigated the stability of a BGK mode whose untrapped particle
distribution is chosen to be that given by the Landau linear theory.71
All of the theories discussed sc far concentrated on investigation
of the wave-wave interaction mechanism., An alternative approach is a
quasilinear wave-particle interaction, Shapiroc and Shevchenko,72 and
Bud 'ko et EE"73 have studied the excitation of sidebands due to
resonant wave-particle interaction, using the O'Neil time-asymptotic
solution48 as their starting peoint. Bud'ko et al, found that only a
lower sideband satisfying |w - kvp[ o O.QwB can be excited, However,
for the parameters used in the experiment of Wharton EE El" their theory
does not predict instability. Shapiro and Shevchenko used a different
distribution function for untrapped particles, and found that both
sidebands can be excited with different growth rates, Substitution of
the experimental parameters of Wharten EE El' in their theory yields
growing solutions, but the growth rates are’much smaller than those
obtained by Kruer et 51.57 The stability of the O'Neil solution has
also been investigated by Manheimer, who considered only the particles
itrapped near the bottom of the potential wells, and predicted that the
74

lower sideband is unstable while the upper sideband is stable. His

theory is considered to be a lower order approximation to the theories
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of Shapiro and Shevchenko, and Bud'ko et al. In the quasilinear theory
of Yagishita and Ichikawa,75 the stability of the time—asympiotic distri-
bution function found by Al*tshul and Karpman49 (see Section 4) was
studied, It was shown that the trapped electrons can cause sideband
instability through interaction with externally excited test waves.

The theories mentioned so far examine the stability of either a
stationary or time-asymptotic equilibrium state, involving a large
amplitude wave, In contrast, Brinca has used the quasilinear theory
during the transient following application of a large amplitude wave

at t = 0.76 He determined the variation of the sideband growth rate,
as a function of time, from the slope of the averaged velocity distri-

bution function in the vicinity of the phase velocity of the large

amplitude wave,

Ekamining the theorijes discussed so far, in the light of the results
of our computer simulations in Section 5.2, it seems appropriate to
compare the simulation results at early stages of temporal evolution
with the theory of Brinca, and at later times with the theory of Kruer
et al. In what follows, we shall, first, consider the gquasilinear
wave-particle interaction theory due to Brinca, and then the wave-wave

interaction theory in the bunched beam approximation due to Kruer et al,

5.3.1 Quasilinear Theory

Theory: Consider a large amplitude, electron plasma wave,
excited at time t = 0 , in an infinite collisionless plasma. The

electron motions are described by
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€ .
i E_ sin (wot - kox) ) (5.1)

where x and v are the position and velocity of an electron, and
Wy is the frequency of the large amplitude wave., Since EG is
assumed to be constant, Eg. (5.1) yields the first integral of the

motion,

m wo 2 eE
W = 53 (v - Eg ) + Egg coB (wot - kox) . (5.2)

The distribution function in the presence of the large amplitude

wave is determined by the Vlasov equation,

2 _ 5, (5.3)

e .
S} 2 = i t -k =
+ v E_sin (mo Ox) av

at ax m 0

e

Since Eq, (5.1) represents the characteristics of Eq. (5.3) in phase-

space, the solution of Egq. (5.3) is given by

Yo 2 . Yo
f(x,v,t) =f |—]+ =18 (x,v,t) £/ |—]), (5.4)
O\k k. ~0 otk
0 0 0
in the resonant region, v = wo/ko . Here, fU is the initial electron

velocity distribution function, fé denotes the derivative of fo

with respect to v , and éo(x,v,t) is given by solution of Eq, (5.,1) as

: 1 t 2
§0=i—m';dﬂ [F(K,Q)ZF'E:'I_] " (k" <« 1), {5.9)
tor untrapped particles, and by
; 1 1 t 2
= 4 - = = 1
§O + = cn [F (n , )¢ T] (e >1) , (5.6)
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for trapped particles, where F represents the elliptic integral of
the first kind, dn and cn are Jacobian elliptic functions, go

denotes the initial value of € , and x , 7, § and [ are defined

by
2 2€E | 1 ' m, \1/2
"o kWeeE, BT TN ,
(5.7)
g = % (kox - mot - ), sin { = k sin E .

The positive or negative sign is used in Egs. (5.5) and (5.6) according
to whether { , £ >0, or ( , £ < 0 . Equation (5.4) is valid pro-
vided that the amplitude is small enough to allow a Taylor expansion
of the distribution function about the phase velocity of the large
amplitude wave, i.e, wB/wO < (kovt/wo)z‘.

Having found the solution of the Vliasov equation, the next step
is to average Eq. (5.4) so as to remove fast oscillations occurring
on a time scale l/mo and on a length scale l/k0 , and to obtain a
slowly-varying velocity distribution (f(v,th)} ., After some mani-
pulation, the averaged solution

w w
(1) ~ 2, (T{:) + (wey 2] (;g) , (5.8)

is obtained, ia which

|
S ’ (5.9)

Mg - Q" gt
(wo) = _—_H—ROKF(K) 1l + 8 z: ___Zn 5 cos [RF(I{)]

(v« < 1), (5.10)
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for the untrapped particles, and

8w il 2n-1 (2n-1)mo_t
(Vo? =% F(%) :E: an—l 5 0 [ 2F (M) : } ’ (5.11)
0 (1+Q ) ’
n=1
(w) = wx [E(T)) - (1 - ﬂzJF(n)] (nz = }E < 1) , (5.12)
K

for the trapped particles. In Eqs. (5.9)-(5.12), F(x)[= F(k,n/2)]
and E(x)[= E(n,n/Z)] are the complete elliptic integrals of the first

and second kinds, and

Yo dug
W= Vo~ e, Wk = ——
ko ™4
(5.13)
Q = exp —nF[(l—Kz)l/zj/F(K)

Since k and 1] are related to the mean velocities defined by
Egs. (5.10) and (5,12), we see that (WD) , which is a function of «k
or 17, is itself a function of the mean velocity,

In Fig., 5.7, (wo) is plotted as a function of velocity, with time
as a parameter., It will be recognized from Eg. (5.8) that a plot of
<W0> indicates the shape of the averaged velocity distribution function
in the resonant region. It will be noted that <W0> develops finer
and finer structure as time increases, resulting in progressively larger
local slope of the velocity distribution function. The application of
the theory is limited to the transient process at the initial stage of
evolution, before the fine structure develops, i.e. up to wBt ~ 21T .

If the averaged distribution function given by Eq. (5.8) is

considered as a slowly-varying 'equilibrium' distribution function,
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FIG. 5.7. Temporal behavior of the averaged distribution function in the resonant region,

vpo is the phase velocity of the main wave. The other vp's are phase velocities of

test waves, (Adapted from Fig. 1 of Ref, 76.).



then a small perturbation, fl , due to application of a test wave may

be described by the linearized Vlasov equation in the form

af af
_1 1l _e , AL _
3T " VR wm 1aw -0 ®.14)

where El is the perturbed electric field. Applying linear stability
analysis for perturbations of the form exp[-i(wt-kx)] , propagating
with phase velocities near that of the large amplitude wave, yields

a growth rate of

2

w .
mip w _ dw 1)
7t = E(k )(E ) dk)( av ) ’ .19)

V=m/k

where +» << @ has been assumed,
Having obtained this result, Brinca simplified it by assuming that

the test waves are described by the warm plasma dispersion relation

2
W

e Gw) = 1 - —P __ _ 0. (5.16)

wz-Skzvi
Equations (5.8),.(5.15), and (5.16) are then sufficient to obtain the
time evolution of the growth (or decay) rates of the test waves.
Figure 5.8 presents some calculations. It will be seen that the side-
bands decay initially (if they are above the thermal fluctuation level),
and then start to grow; the larger the phase velocity separation between
the test wave and the large amplitude wave, the stronger the initial

damping,
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FIG. 5.8. Cumulative, logaritgmic, temporal growth of test waves with phase velocities

shown in Fig. 5.7. [Ai = {' 7idt] (Adapted from Fig. 4 of Ref. 76.).



Comparison with Computations: The theoretical growth rate for the

test waves in the initial development stage has been computed using
Egs. (5.8), (5.11), (5.12), (5.15) and (5.16). Equations (5.,11) and
(5.12) are used since |w/k - wo/ky| < wk holds for Modes 11 and 12 as
shown in Fig. 5.2. The calculated results are shown in Fig. 5.9 for
comparison with the growth rates measured from the simulation results
presented in Fig. 5.1. Although the evolutionary patterns for Mode 12
from the theory and computation resemble each other to some extent, the
agreement is not good., It should be borne in mind that the theory is
applicable only to cases in which the main wave amplitude variation is
negligible; in our simulation the amplitude actually varies by a
factor of more than two during the period up to wpt = 30 , To obtain
better agreement, we have used information from the detailed plot of
the averaged velocity distribution function in Fig, 5.2. We have
computed the growth rate, using Eq. (5.15), at intervals of wpt = 4
from the local slope of the averaged velocity distribution function at
the phase velocities of the test waves., The results are shown in
Fig. 5.9. There is a striking similarity in evelutionary pattern for
both modes between the measured growth rate and the theoretical one;
there is a difference in wpt of about 3 for both modes until
mpt = 10 , and a difference of about 15 for Mode 11, and 10 for Mode 12,
thereafter,

In seeking an explanation for this phenomenon, it should be recalled
that in the quasilinear theory of Brinca there is an implicit assumption
that the waves respond instantaneously to the slope of the averaged

velocity distribution function. However, since transient phencmena
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are involved, it is more reasonable to assume that some time elapses
before the macroscopic effects of the resonant wave-particle inter-
action appear, We may estimate this time delay as follows. Fronm
Fig. 5.2, the width of the bump in the velocity distribution function

may be estimated to be §v = 0,6 v Considering this bump as a set

t °

of streams with continuously distributed velocities, providing a con-

tinuous range of frequencies kv , we obtain the rise time, Tq of
a perturbation from the approximate equality
i
kav =, 5.17
VT, = ( )

Substituting appropriate numerical values into this expression yields
pra ~ 10 for Mode 11, and 9 for Mode 12. These results do not fully

account for the discrepancies, of course, but provide a good intuitive

explanation.

5.3.2 Wave-Wave Interaction Theory

Theory: The simplest model of sideband instability which
incorporates wave-wave interaction is that invelving ithe bunched beam
approximation, In this approximation, the equilibrium distribution
function is assumed to contain trapped particles localized at the
bottom of the potential wells of a large amplitude wave propagating at
phase velocity v_ . The trapped particles act coherently as harmonic

p
. 1
oscillators of frequency wB[= (ekOEO/me) /2]. The effects of trapped

particles other than those near the bottom are neglected.
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The trapped electrons are governed by the equation of motion

2 1
2 T wB(xn_ an— vpt) -

2[%— E(k,w)exp[~ i(wt-kx )Jdkdw ,
dt P (2m) e

(5.18)
where xn is the position of a particle in the n~th potential well,
xno + vpt is the position of the n-th well, and E(k,w) is the Fourier
transform of the perturbation electric field. The effects of the
electric field of the large amplitude wave are taken care of by the
first term on the right-hand side of Eq. (5.18).

Treating the trapped electrons as a source charge density intro-

duced into a plasma of permittivity ep(k,w) , we have

ike (K, w)E(K,0) = W—) , (5.19)

0

where p(k,m) is obtained from the Fourier transform of the displace-
ment of the trapped particles given by Eq. (5.18). Some manipulation

of Eqs. (5.18) and {(5.19) yields

2
w E(k+nk |, wnw )
E(k,w) = T 0 0
T kv )2 5 2 W ’
wokv ) -wp P
(5.20)
NTez 1/2 ,
T
W = » Ay =7 w, = k. v,
T  |em 0" K 0~ "0
0] ekO 0O P

where NT is the number of trapped electrons in each potential well.
Equation (5.20) shows that perturbations at g,k are coupled to an

k+nk

infinity of perturbations at W, 0
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Since plasma does not support wave propagation at frequencies
greatly different from the plasma frequency, mp , the two waves E(k,u)
antd E(k—2k0, w—Zwo) may be expected to be dominant for ¢ ~ mp
Retaining only these two terms yields two coupled mode equations for
E(k,n) and E(kn2k0, m-2w0) . The dispersion relation results from
equating the determinant of their coefficients to zero. We chtain

1 = (5.21)

b4

2

By 1, 1

2 2 k, k-2k_, w2
o ep( w) ep( o0 W2uwg)
where () =g - kvp . If the large amplitude wave is not too large, the

warm plasma approximation for ep(k,m) [Eq. (5.16)] may be used,

Comparison with Computations: In Fig. 5.10 are plotted the theo-

retical growth rates for Modes 8-12, obtained by solving Egq. {5.21)
combined with Eq, (5.16). To make quantitative comparisons, the growth
rates of the unstable modes were measured in the five simulations (A-E)
described in Section 5.2, The growth rates were cobtained from energy/
time plots for each unstable mode, similar to those shown ian Figs. 5.1
and 5.4, and plotfted in Fig. 5.10. The errors involved in measuriang
the growth rates of the sidebands were about 10%. We see that there is
good agreement for small values of Wy o but that the measured growth
rates tend to be larger than the theory predictis for large values of

w In considering the discrepancies, it should be remembered that

5 -
the theory is not valid for very large amplitude main waves, i.e. we
reguire E§/4nnkBT << 1 , and that values of the bounce frequency, W

used in this plot are not those corresponding to the initial amplitudes
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of the main wave, but have been estimated from the expected time-

asymptotic amplitudes indicated by dashed lines in Figs., 5.1 and 5.4.

5.4 Comparison with Experiments

In comparing the results of our simulations with those of labora-

66,77,78 it should be noted that the simulations were

tory experiments,
carried out for an initial value problem, rather than a boundary value
problem., Since laboratory experiments deal with spatial phenomena,
direct quantitative comparison may not be appropriate. Under certain
conditions, however, it may be possible to transform anm initial value
problem into a boundary value problem so as to allow quantitative
comparison with the experimental data, For example, as found by Lee

and Schmidt,55 the 0'Neil solution for a temporal case can be trans-
formed into a spatial solution by replacing the normalized time,

wBt , and the parameter yL/mB , by x/hB and Brrg where Ag = w/ka
and B, = WL/('Bw/ak)

In making this transformation, it should be remembered that in the
simulation the system length is finite, and only a finite number of
wavenumbers are available with equal separation 2n/L . As a conse-
quence, it may well be that the fastest growing mode observed in the
simulation is not the fastest growing mode predicted by theory for an
infinite plasma, This implies that an accufate measurement of the
dependence of the sideband peak freguency separation, Ay , and side-

band growth rate, y , is not available from our simulations, Neverthe-

6

5 » with

less, the data plotted in Fig. 5.10 seem to suggest v = E
o > 1/2 , which is to be compared with the experimental observations
that My = Eé/z , ¥ e Eé/z by Franklin et El"77 that

123



1 1.2 )
Aw = EG/E s 7 T Tg e EO (70 is @& constant) by Jahns and Van Hoven,78
and that AW = Wg by Wharton et E&.Gﬁ These peasurements could be

made in the simulation, of course, bY making the gystem longer, but we
did not pursue this because of the high costs involved. Even s0, a
number ©f characteristic features of the laboTatory observations on
sideband instability correspond 1o those described in Section 5.2. In
fact, all of the features (a)—(e) predicted by the computer simulation
were ohserved in the laboratory experimentﬁ.

1n terms of the strength of the main wave, our simulations lie
between previous conputer simulationsll’sg’al and the jaboratory

¢6,77,78

experiments. Qur simulations were carried out in the main

wave amplitude range 0.06 < eEO/mevtmp < 0.50. In the previous simu-

jations, the range was 0.5 iéeEO/mevtmp 5_0‘7. Note, however, that
the amplitude guoted is the maximum level reached at the end of the
period during which the system was excited externally at the frequency
of the main wave. on the other hand, the mpalin wave amplitude in the

E

-3
lahoratory experiments was 2 x 10 < eEO/mevtmp < 0.02 (Wharton EE 51.),

p.o2 S-EEQ/mevfnp < 0.1 (Franklio gt al.), and 0.03 £ eEO/mevtu;p 5_0.3
{Jahns and van Hoven). it will be seen, therefore, that our simulations

were performed for conditions more appropriate to the iaboratory experi-

mepts than the previous sipulations of sideband {nstability.

5,4 Bummary

In this section, we have simulated the sideband instability aé an
initial value problem for comparison with existing theories and experi-
mental results. The initial development has been shown to be explicahble
by the gquasilinear theory of Brinca in cases where the main wave
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amplitude is relatively small (mB/mp < 0.2), and the test wave growth
{or damping) rate is not too large compared with its frequency
(y << w) .

The later stages of evolution of the sideband instability, after
one or two phase-space rotations of the particles have been completed,
have been shown to be well described by the wave-wave interaction theory
in the bunched beam approximation of Kruer et El‘ For very large main
wave amplitude (wB/ijz 0.2), the simulation gives higher growth rate
than the theory predicts,

Comparison with the laboratory experiments has shown that many
features of the instability observed in our simulation at similar signal
levels are consistent with the experimental observations, account always
being taken of the fact that the simulation is for temporal evolution,
and laboratory experiments for spatial evolution. The dependence of
the frequency separation, Ay , and sideband growth rate, ¥ , upon the

wave amplitude, EO , 8till need to be checked,
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6. SATELLITE GROWTH

6.1 Introduction

The computer simulations to be described in this Section were
stimulated by laboratory observations by Jahns and Van Hoven of

satellite growth at freguency mz(: 2. - ml) when a large amplitude

0
signal at Wy and a small amplitude signal at wy were excited
simultaneously.83 Jahns and Van Hoven interpreted the satellite growth
as being due to four-wave passive coupling, They applied a perturbation
expansion method84 of solving the Vlasov and Poisson equations 1o a
spatial problem appropriate to their experiment, and obtained a solution,
describing the spatial evolution of the satellite.85 However, the
predicted dependence of the satellite growth rate upon the amplitude of
the signal at W, did not fit the observed dependence., Jahns and
van Hoven ascribed the discrepancies to dissipation, higher-order
processes, and wavenumber mismatch,

DeNegef made similar observations to those of Jahns and Van Hoven
in his experiments with a large amplitude wave and a small amplitude
wave launched simultaneously.86 He considered the small amplitude wave
as a slo& modulation of the amplitude and phase of the large amplitude
wave, and calculated the amplitudes of the small amplitude wave and
the satellite wave as a function of position, His galculation showed
agreement with the experiments for the former, but not for the latter,
In particular, the energy level of the satellite wave observed in the
experiment was 90 dB below the theoretical prediction, DeNeef

suggested that the discrepancy might be due to the strong dependence

of the satellite behavior on the nonlinear wavelength shift of the
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large amplitude wave. In his theory, he used the wavelength shift
! .. 860
calculated from the theory of Morales and O'Neil,

Brinca considered such a process for the analogous temporal problem

in which the synchronism relations

2k =k k 20 = ]
+ , Wy = Wy + W, (6.1)

are satisfied.87 He obtained coupled-mode equations which describe

the temporal evolution of the wave amplitudes. The theory failed,
however, to give either the observed rapid growth rate, or the observed
satellite energy level.

In what follows, we shall demonstrate good agreement bétween com-
puter simulations and theoretical predictions hased on DeNeef's method
applied to a temporal problem rather than a spatial one. Unlike DeNeef,
we use the measured nonlinear frequency shift in the calculation of the
wave evolution. The computer simulation is discussed in Section 6,2.
The theory is described in Section 6,3, and compared with the simulation

in Section 6.4,

6.2 Computations

In the simulations to be described, 16348 particles were follqwed
in a system 256 hD long, divided into 256 cells, The continuous
Maxwellian distribution was replaced by 64 beams spaced vt/7 apart,
Velocity-space was covered from -4,5 vt - 4,5 Vt by a grid with mesh
size equal to the beam spacing. Periodic smoothing was carried out
every 16 time-steps, a time-step being 0.25/mp . Periodic boundary

conditions were applied in space,.
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Perturbations of the form given by Eq. (3.23) were applied in
Modes 13 and 12 at t = 0 . Figure 6.1 shows the results of the simu-
laticon for two different main (large amplitude) wave amplitudes, and
three different test (small amplitude) wave amplitudes, It will be seen
that in each case the main wave eveolves almost exactly as a single
large amplitude wave (compare with Fig. 4.1), i.,e, the main wave ampli-
tude is not large enough to cause appreciable sideband growth, due to
trapped particle instability of the type studied in Section 5, on the
time scale for which the satellite grows and saturates. The test wave
follows a very similar evoluticn to that of the main wave. The satellite
grows from noise, saturates at a level comparable to that of the test
wave, and seems to show oscillatory behavior thereafter,

From Fig, 6,1(a)-(c), we ohserve that the behavior of the test
wave and the satellite is almost identical for different test wave
amplitudes, except that the curves are shifted vertically by an
amount which scales linearly with the test wave amplitude, This is so
only when the test wave amplitude remains small compared with the main
wave amplitude, If increased progressively it finally disrupts the
particle trépping by the main wave, and hence affects the main and test
wave evolution. From Fig, 6.1(c)-(e) it will be seen that the growth
rate of the satellite seems to decrease as the main wave amplitude
decreases_88

When the roles of Modes 12 and 14 are switched, Mode 12 is observed
to grow from noise, reach the level of Mode 14, and finally exceed it,.
We have confirmed that halving the beam spacing changes the results only

in minor details.

128



| MODE 13 (MAIN WAVE)
MODE 2 (TEST WAVE)
(_D — .\'"--_.__,.——
n
L
=
5 =
L
S
= 109
Lt
=
'5: o
™ MODE 14 (SATELLITE)
o
107®
COMPUTATION
oet 0 THEORY
| J | | J }
0 20 40 60 80 100 120
pr
FIG. 6.1, Temporal evolution of main, test, and satellite waves.
(a) (Main wave electrostatic energy/thermal energy) = 1,86 x 10 .
(Test wave electrostatic energy/thermal energy) = 4.18 x 10 .
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6.3 Theory
At time t = 0 , the total electric field due to the main wave

and the test wave is given by

E(x,0) = {EO exp ikOx + QEOexp i(k0 - Ak)x] + {c.c,] , (6.2)

where E0 is the test wave amplitude, and c.c. denotes complex

conjugate., When ¢ dis small, Egq. (6.2) can be written as

E(x,0) == cz(x)E0 exp[ikox - 8(x)] + fc.e.} ,

cz(x) = exp {c cos Akx) = 1 + € cos Akx | {6.3)

9(x) = ¢ sin Akx

This shows that the test wave can be regarded as (spatial) modulation
of the amplitude and phase of the main wave when ¢ << 1
In the absence of modulation, the electric field of the main wave

is given by

wgt
E (x,t) = EO[exp ;—Bf Q(t').dt’] exp[-iwyt - kx)] + {c.c.],
0
{6.4)
Q(t7) = - [18w(t’) + y(t 7, t’ =t

B

where §w is the nonlinear frequency shift, and + 1is the damping rate
of the main wave., It is assumed that &y and +» are functions of
anplitude and time only through the product wBt , and that wB is
independent of time. The use of the form given by Eq,. f6.4) would be
valid if 7L/wB << 1 , where 7L is the linear Landau damping rate of
the main wave,
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To ingorporate the slow amplitude and phase variations in space
due to the presence of the test wave, E0 is replaced by cz(x)E0 ,
and the phase &(x) defined in Eg. (6.3) is included. The modulated

wave is then given by,

c(x)wBt

Em(x,t).= cz(x)E0 exp[ Q(t’)dt']

_ 1
c(X)wB
0 (6.5)

X exp(“i[wot - kX + O(X)]) + {c.c.} .

Equation (6.5) gives a solution in space for a given amplitude, cz(x)Eo.
and initial phase, 8(x) . If Ak is given, the solution of Eq. (6.5)
is correct only for time +t <« Zﬂ/AkVp , where vp is the phase
velocity of the main wave.‘

To obtain the temporal evolution of the Fourier modes, Eq. (6.5) is

Fourier-transformed in space by the relation,

Em(k,t) =J dx exp(-ikx)Em(x,t) . {6.6)
We obtain, after some manipulation,

|E_ Gk, )] = E_(£) sa(k-—ko) + el heacn))® « BZ(t)]"/‘?a(k-ko + AK)

1/2

+ e[a%(e) + BTV 2 g0k a0 + 0D

(6.7)

where §( ) is the Dirac delta-function, and
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it

B
1
Eu(t) = E0 exp[—imot + m—Bf Q(t')dt’] + {c.c.} ,
0
wBt
1 1 ’ '
A(t) = 3 [y(t)t - a};f 7(t ydt ] R
4]
wBt
1 1 ’ ¢
B(t) = p Sw(t)t - — - awm(tHdt . (6.8)
B

0]

Equation (6.7) shows that the main wave is unchanged to order e |
and predicts Lhe existence of a satellite at k0 + Ak . Note that the
satellite is linear in the test wave amplitude, EEO , consistent with
the results of the simulation shown in Fig. 6.1(a)-(c). The change in
the growth rate to be seen in Fig. 6.1(c)-(e) when the main wave ampli-

tude is varied, is suggested by Eq. (6.7), since A(t) and B(t)

depend on the main wave evelution,

6.4 Compariscon with Simulation

To make calculations from Eq. (6.7), we need to know values of Hu
and ¥ to be substituted in Eq. (6.8). Although the nonlinear freguency
- : . . 48, 60
shift, &w , and growth rate, vy , have been predicted theoretically,
we prefer to use pu(t) and y(t) determined from the results of our
simulation, This avoids error due to the ohserved main wave evolution
not being exactly as ihese theories predict, To determine Aw(t) and

v{t) , we have first tabulated the phase change and amplitude of the

complex Fourier amplitude of the main wave after every time-step.
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Since these gquantities contain large ripples, we have smoothed them
using fhe least~square polynomial of degree one through five successive
amplitudes, 1In Fig. 6.1 are plotted the theoretical calculations from
Eq. {(6.7) using these values, We see that there is good agreement
between the theory and the simulation. In particular, the theoretical
growth rate of the satellite at the earliest stage increases as the
main wave amplitude increases, in very good agreement with the simulation,
It is also significant that in each case the ohserved satellite energy
level is in agreement with the calculated one, Although the calculated
behavior of the test wave agrees well with the simulation, detailed
observation shows that the simulated test wave first damps at the
linear Landau damping rate, and then at the increased rate in agree-

ment with the calculated one.

6.5 Summary

We have studied the temporal behavior of the satellite wave pro-
duced when & large amplitude electron plasma wave and a small amplitude
test wave are launched simultaneously. It has been shown that a theory
which treats the test wave as a slow modulation of the amplitude and
phase of the main wave explains well guantitatively the rapid growth

and energy level of the satellite observed in our computer simulation.
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7. CONCLUSIONS

In Sections 2-6, we have studied linear and nonlinear phenomena
associated with electron plasma waves, using a low-ncise hybrid simu-
lation model, Despite its gttractive features, little use had previously
keen made of this model since it was proposed by Denavit in 1972.6

In Section 3, the model was first studied in detail, and demon-
strated to simulate precisely the linear wave dispersion characteristics
predicted by theory for long wavelength collective behavior. This
verification of the validity and effectiveness of the simulation model
is very important as a starting point for the subsequent study of non-
linear phenomena. It also serves to establish the validity of the
widely-used Cloud~in-Cell model, and the Langdon theory describing the
finite-size particle model. Quantitative results in the very low
energy range discussed here have never heen obtained previously with
sqch a high degree of accuracy with the simple particle models of
Section 2,

In Section 4, the low-noise model was used to investigate the
behavior of a monochromatic wave in both the linear and nonlinear
régimes. It was found that existing nonlinear theories are gqualitatively
in good agreement with the simulation results, but that there are sone
significant differences. In particular, the phase-mixing has heen
found to be slower than predicted. A new contribution of this section
is a measurement of the nonlinear frequency shift, which is shown to
vary as Eé/z .

Section 5 was devoted to the investigation of the sideband, or

trapped-particle, instability. Very good agreement was obtained for
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wB/wp 5: 0.2 between the results of the simulation, and a simple
theory by Kruer et al. and a quasilinear theory by Brinca, We have not
studied in detail the characteristics of the sideband instability for a
heavily-damped main wave. This problem remains to be investigated
further by both simulation and theory.

In Section 6, we have studied nonlinear process involving coupling
between a test wave and a large amplitude wave to produce a satellite
wave. A simple theory,based on modulation of the large amplitude wave,
was shown to explain the behavior of the satellite wave. This process
may have important consequences in connection with the sideband insta-
bility discussed in Section 5; when a test wave in one sideband is
launched at a level above the fluctuation level, as is often done in
experiments on the sideband instability, a corresponding wave in the
other sideband may grow rapidly to a comparable level to that of the
test wave, before the effects of the trapped particle instability
discussed in Section 5 come into play. As a consequence, this nonlinear
process may, for example, affect the measured energy spectrum indepen-
dently of the sideband instability.

We wish to emphasize in connection with Sections 3-6 that all of
the simulations that have bheen presented were carried out under conditions
for which the assumptions of relevant theoretical models could be
approached, and in realistic energy ranges compared with those under
which laboratory experiments are ﬁerformed. It should be noted in
relation to the latter, however, that our simulations have been
concerned with temporal variations in a periodically bounded system,

rather than with spatial variations in an effectively unbounded system,
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Although we have investigated only one-dimensional problems, it
seems straightforward to extend the hybrid simulation model to two and
three dimensions, The effects of magnetic field could alsoc be included
at the cost of increased complication. The smoothing operation becomes
more involved and time-consuming as the dimensionality is increased,
and magnetic field is included. Even if it may not yet be economically
feasible to extend its use teo multidimensional problems with magnetic
field included, the hybrid simulation model can serve very well, with
reasonable cost, to achieve a very low fluctuation level given the

capacity of currently available computers.
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APPENDIX: DERIVATION OF WEIGHTING FUNCTIONS

Derivation:

Consider & smoothing operation in velocity-space,6

Ev)) =z £(VIW(v V) , (A.1)

v

where vi denotes the i-th velocity grid point, and the summation is
over particle velocity, v . The n-th order moment of the distribution

function before smoothing is

(v -_-z: viE(v) . (A.2)
v .

After smoothing, the n-th order moment is given by
~ n
(¥ =§: v, ¥(v,) . (A.3)
i i
i

Substituting Eq. (A.1) into Eq. (A.3) and equating (vn) and (3“)
yields

n n
Zvi W(Vi -v)=v |, (A.4)

for any value of v

Velocity, v , can always be expressed as

vV = V., + v,
J 6 J

= {J + TIAV (0<rg1l),

(A.5)

141



where VJ [= jAv] denotes the nearest velocity grid point such that

v, sV

i , ﬁvj is the increment from the grid point, and Av is the

velocity grid size, Substituting Eq. (A.,5) into Egq. (A.4), and letting

p=1i-J, gives

. n. ; n
PIEER IR ACIE S INA I G (A.6)
P
Using the binomial expansion, it will be seen that Eq. (A.6) is satis-

fied if

Zme[(p - rav] = ot (m=0,1, ... n) . (A.7)
P

m .
Consider the Lagrangian interpolation of the function r with

89
n+ 1 points, given by

z: ﬁ%;ml%r)= m’ (A.8)

where the

A;n+l)(r) are the Lagrangian coefficients with 0 € r <1 |

and s is an integer, Since m < n , the interpolation is exact,
Comparing Eqs. (A.7) and (A.8), it follows that the desired weighting

function may be given by

{n+1)

wl(p - r) Av]) =.Ap (r) . (A.9)
Rewriting Eq. (A,9) gives
(n+l) _ N - A,
wey = aD (p o) T - Dav s v s e av], (A.10)

where 1 - s =p < s
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When a is odd, the weighting function is given by Eq. (A.10)
with s = (n+1)/2 . When n is even, the Lagrangian coefficients do
not give even weighting functions, In this case, they may be obtained

by symmetrization as follows,

(n+1) n v n n
A—(n/z)(l + 3t ——) [— (— + l) AV s v 5 - 2 Av] ,

(SIS

w{v) = < -;- A;n"'l) ( p - %) + A(_[_Hl)(l-p + -v—v) [(p—l),[w <v g p&v],

(n+l) n v n n
Al i-s) [Besvea@ed w)

o=

(A.11)

where 1 - s sp<s, and s = (n + 2)/2

Although the weighting functions were derived for velocity-space,
Egs. (A.10) and (A.11) can be used for coordinate-space by replacing
v by x

Examples: For n=1 , Eq. (A.10) is written as

@) _ v v
o A (’F)=1+F (-av = v £ 0),
wo(v) = .12
v
A{”(“E?)““X? (0 € v g AV)

The smoothing operation using this weighting function conserves particles

and momentum,
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For nm2 , applying Eq. (A.l11) yields

AP - w e ) - R -2 E)
(2)

w (V): (OSVS&V},

2

FAPk-F) iR F) @eveam

In the interval, -2Av € v < 0 | w(z)(v) is defined by symmetry. This
weighting function conserves particles, momentum, and energy. The

functions w(l)(v) and w(z)(v) are shown in Fig. A.1l.

FI1G. A.1. Linear (n = 1) and quadratic (n = 2) weighting
functions. (Adapted from Fig., 3 of Ref, 6,).
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